Precise Gravimetric Surveys with the Field Absolute Gravimeter A-10

  • R. Falk
  • Ja. Müller
  • N. Lux
  • H. WilmesEmail author
  • H. Wziontek
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


The A-10 field absolute gravimeter produced by the company Micro-g LaCoste Inc. was found to comply well with the producer specification of an uncertainty of 100 nm s−2 for the determination of gravity acceleration. Repeated observational checks at a known reference station and careful calibration of instrumental standards demonstrated that the gravity measurements quality could further be enhanced. This opens new applications for precise gravimetry like the establishment of reference networks for monitoring global change processes where uncertainties of a few 10 nm s−2 are of high value. The results and experiences from two extensive field campaigns using an A-10 gravimeter are presented.


Superconducting Gravimeter Absolute Gravity Absolute Gravimeter Mode Lock Terrestrial Gravity Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The project “GOCE-GRAND II” was supported within the framework of the GEOTECHNOLOGIEN program of the German Bundesministerium für Bildung und Forschung (BMBF), Grant: 03F0422A. The helpful comments of an anonymous reviewer are gratefully acknowledged.


  1. Flury J, Peters T, Schmeer M, Timmen L, Wilmes H, Falk R (2007) Precision gravimetry in the new Zugspitze gravity meter calibration system. In: Proceedings of IAG Gravity Field Service Symposium. Istanbul, pp 401–406Google Scholar
  2. Hahn R (2007) Frequenzbestimmung und Stabilitätsuntersuchung eines HeNe Lasers, Bachelor Thesis, Technical University DarmstadtGoogle Scholar
  3. Holweg D (2001) Systemanalyse des Feld-Absolutgravimeters A-10#b002, Diploma Thesis, Technical University DarmstadtGoogle Scholar
  4. Ihde J, Wilmes H, Müller Ja, Denker H, Voigt C, Hosse M (2010) Validation of satellite gravity field models by regional terrestrial data sets. In: System Earth via Geodetic-Geophysical Space Techniques, Springer, pp 277–296Google Scholar
  5. Liard J, Gagnon C (2002) The new A-10 absolute gravimeter at the 2001 International Comparison of Absolute Gravimeters. Metrologia 39:477–484CrossRefGoogle Scholar
  6. Mäkinen J, Stahlberg B (1998) Long-term frequency stability and temperature response of a polarization-stabilized He-Ne laser. Measurement 24:179–185CrossRefGoogle Scholar
  7. Micro-g LaCoste Inc (2008) A-10 portable gravimeter user’s manual. , accessed on Nov. 10, 2009
  8. Niebauer TM, Faller JE, Godwin HM, Hall JL, Barger RL (1988) Frequency stability measurements on polarization-stabilized He-Ne lasers. Appl Optic 27(7):1285–1289CrossRefGoogle Scholar
  9. Schmerge D, Francis O (2006) Set standard deviation, repeatability and offset of absolute gravimeter A10-008. Metrologia 43:414–418CrossRefGoogle Scholar
  10. Wilmes H and Falk R (2006) Bad Homburg – a regional comparison site for absolute gravity meters. In: international comparison of absolute gravimeters in Walferdange (Luxembourg) of November 2003. Francis O and van Dam T (eds), Cahiers du Centre Europen de Geodynamique et de Seismologie (EGCS), Luxembourg, vol 26, pp 29–30Google Scholar
  11. Wilmes H, Richter B, Falk R (2003) Absolute gravity measurements: a system by itself. In: Gravity and Geoid 2002 – Proc. of 3rd Meeting of the International Gravity and Geoid Commission, Tziavos IN (ed), Editions Ziti, pp 19–25Google Scholar
  12. Winters M (2004) Laser Heterodyne System,, Accessed on Nov. 10, 2009

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • R. Falk
    • 1
  • Ja. Müller
    • 1
  • N. Lux
    • 1
  • H. Wilmes
    • 1
    Email author
  • H. Wziontek
    • 1
  1. 1.Federal Agency for Cartography and GeodesyFrankfurt/MGermany

Personalised recommendations