AIUB-GRACE02S: Status of GRACE Gravity Field Recovery Using the Celestial Mechanics Approach

  • A. JäggiEmail author
  • G. Beutler
  • U. Meyer
  • L. Prange
  • R. Dach
  • L. Mervart
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


The gravity field model AIUB-GRACE02S is the second release of a model generated with the Celestial Mechanics Approach using GRACE data. Inter-satellite K-band range-rate measurements and GPS-derived kinematic positions serve as observations to solve for the Earth’s static gravity field in a generalized orbit determination problem. Apart from the normalized spherical harmonic coefficients up to degree 150, arc-specific parameters like initial conditions and pseudo-stochastic parameters are solved for in a rigorous least-squares adjustment based on both types of observations. The quality of AIUB-GRACE02S has significantly improved with respect to the earlier release 01 due to a refined orbit parametrization and the implementation of all relevant background models. AIUB-GRACE02S is based on 2 years of data and was derived in one iteration step from EGM96, which served as a priori gravity field model. Comparisons with levelling data and models from other groups are used to assess the suitability of the Celestial Mechanics Approach for GRACE gravity field determination.


Gravity Field Geoid Height Gravity Field Model Kinematic Position Ocean Tide Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the generous financial support provided by the Swiss National Science Foundation and the Institute for Advanced Study (IAS) of the Technische Universität München.


  1. Beutler G (2005) Methods of celestial mechanics. Springer, BerlinGoogle Scholar
  2. Case K, Kruizinga G, Wu S (2002) GRACE level 1B data product user handbook. D-22027. JPL, Pasadena, CAGoogle Scholar
  3. Flechtner F, Schmidt R, Meyer U (2006) De-aliasing of short-term atmospheric and oceanic mass variations for GRACE. In: Flury J, Rummel R, Reigber C, Rothacher M, Boedecker G, Schreiber U (eds) Observation of the earth system from space. Springer, Heidelberg, pp 83–97CrossRefGoogle Scholar
  4. Förste C, Schmidt R, Stubenvoll R, Flechtner F, Meyer U, König R, Neumayer H, Biancale R, Lemoine JM, Bruinsma S, Loyer S, Barthelmes F, Esselborn S (2008a) The GeoForschungsZentrum Potsdam/Groupe de Recherche de Géodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. J Geod 82:331–346CrossRefGoogle Scholar
  5. Förste C, Flechtner F, Schmidt R, Stubenvoll R, Rothacher M, Kusche J, Neumayer KH, Biancale R, Lemoine JM, Barthelmes F, Bruinsma S, König R, Meyer U (2008b) EIGEN-GL05C – a new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation. Geophysical Research Abstracts, vol. 10. EGU, ViennaGoogle Scholar
  6. Gruber T (2004) Validation concepts for gravity field models from satellite missions. In: Proceedings of second international GOCE user workshop “GOCE, The Geoid and Oceanography”, ESA-ESRIN, FrascatiGoogle Scholar
  7. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman, San Francisco, CACrossRefGoogle Scholar
  8. Jäggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beutler G (2009) Phase center modeling for LEO GPS receiver antennas and its impact on precise orbit determination. J Geod 83:1145–1162CrossRefGoogle Scholar
  9. Jäggi A, Beutler G, Mervart L (2010) GRACE gravity field determination using the celestial mechanics approach – first results. In: Mertikas S (ed) Gravity, geoid and earth observation. Springer, Berlin, pp 177–184Google Scholar
  10. Lemoine FG, Smith DE, Kunz L, Smith R, Pavlis EC, Pavlis NK, Klosko SM, Chinn DS, Torrence MH, Williamson RG, Cox CM, Rachlin KE, Wang YM, Kenyon SC, Salman R, Trimmer R, Rapp RH, Nerem RS (1997) The development of the NASA GSFC and NIMA joint geopotential model. In: Segawa J, Fujimoto H, Okubo S (eds) IAG symposia: gravity, geoid and marine geodesy. Springer, Berlin, pp 461–469Google Scholar
  11. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insight from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  12. Mayer-Gürr T (2008) Gravitationsfeldbestimmung aus der Analyse kurzer Bahnbögen am Beispiel der Satellitenmissionen CHAMP und GRACE. Schriftenreihe 9, Institut für Geodäsie und Geoinformation, University of Bonn, BonnGoogle Scholar
  13. Prange L, Jäggi A, Dach R, Bock H, Beutler G, Mervart L (2009) AIUB-CHAMP02S: the influence of GNSS model changes on gravity field recovery using spaceborne GPS. Adv Space Res 45:215–224CrossRefGoogle Scholar
  14. Savcenko R, Bosch W (2008) EOT08a – empirical ocean tide model from multi-mission satellite altimetry. DGFI report 81, Deutsches Geodätisches Forschungsinstitut, MunichGoogle Scholar
  15. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505CrossRefGoogle Scholar
  16. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Poole S (2007) The GGM03 mean earth gravity model from GRACE. Eos Trans AGU 88(52)Google Scholar
  17. Zenner L, Gruber T, Beutler G, Jäggi A, Flechtner F, Schmidt T, Wickert J, Fagiolini E, Schwarz G, Trautmann T (2011) Using atmospheric uncertainties for GRACE de-aliasing – first results. In: Kenyon S et al (eds) Geodesy for planet earth. Springer, HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Jäggi
    • 1
    Email author
  • G. Beutler
    • 1
  • U. Meyer
    • 1
  • L. Prange
    • 1
  • R. Dach
    • 1
  • L. Mervart
    • 2
  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland
  2. 2.Institute of Advanced GeodesyCzech Technical UniversityPragueCzech Republic

Personalised recommendations