Improved GPS Data Analysis Strategy for Tide Gauge Benchmark Monitoring

  • Alvaro Santamaría-GómezEmail author
  • Marie-Noëlle Bouin
  • Guy Wöppelmann
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


The University of La Rochelle (ULR) TIGA Analysis Center (TAC) completed a new global reprocessed solution spanning 13 years with more than 300 GPS permanent stations, 216 of them being co-located with tide gauges. A state-of-the-art GPS processing strategy was applied, in particular, the station sub-networks used in the daily processing were optimally built. Station vertical velocities were estimated in the ITRF2005 reference frame by stacking the weekly position estimates. Outliers, offsets and discontinuities in time series were carefully examined. Vertical velocities uncertainties were assessed in a realistic way by analysing the type and amplitude of the noise content in the residual position time series. The comparison shows that the velocity uncertainties have been reduced by a factor of 2 with respect to previous ULR solutions. The analysis of this solution and its by-products shows the high geodetic quality achieved in terms of homogeneity, precision and consistency with respect to other top-level geodetic solutions.


International GNSS Service Solar Radiation Pressure International Terrestrial Reference Frame Phase Center Variation Weekly Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge two unknown reviewers who contributed to an improved paper. We also thank the invaluable technical support given by Mikael Guichard, Marc-Henri Boisis-Delavaud and Frederic Bret from the IT centre of the University of La Rochelle (ULR). The ULR computing infrastructure used for the reprocessing of the GPS data was partly funded by the European Union (Contract 31031-2008, European regional development fund). This work was also feasible thanks to all institutions and individuals worldwide that contribute to make GPS data and products freely available.


  1. Altamimi Z, Collilieux X (2008) IGS contribution to ITRF. J Geod 83(3–4):375–383Google Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112:B09401CrossRefGoogle Scholar
  3. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE Processing Center of the International GPS Service for Geodynamics (IGS): theory and initial results. Manuscripta Geodaetica 19:367–386Google Scholar
  4. Blewitt G, Lavallée D (2002) Effect of annual signals on geodetic velocity. J Geophys Res 107:B02145CrossRefGoogle Scholar
  5. Boehm J, Werl B, Schuh H (2006) Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. J Geophys Res 111:B02406CrossRefGoogle Scholar
  6. Bouin M-N, Wöppelmann G (2010) Land motion estimates from GPS at tide gauges: a geophysical evaluation. Geophys J Int 180:193–209CrossRefGoogle Scholar
  7. Bruyninx C (2011) A dense global velocity field based on GNSS observations: preliminary results. In: Kenyon S et al (eds) Geodesy for planet Earth. Springer, HeidelbergGoogle Scholar
  8. Collilieux X, Altamimi Z, Ray J, van Dam T, Wu X (2009) Effect of the satellite laser ranging network distribution on geocenter motion estimation. J Geophys Res 114:B02145CrossRefGoogle Scholar
  9. Douglas B (2001) Sea level change in the era of the recording tide gauge, vol 75, International geophysics series. Academic, San Diego, CAGoogle Scholar
  10. Dow JM, Neilan RE, Gendt G (2005) The International GPS Service: celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36:320–326CrossRefGoogle Scholar
  11. Ge M, Gendt G, Dick G, Zhang F, Reigber C (2005) Impact of GPS satellite antenna offsets on scale changes in global network solutions. Geophys Res Lett 32:L06310CrossRefGoogle Scholar
  12. Hernández-Pajares M, Juan JM, Sanz J, Orús R (2007) Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates. J Geophys Res 112:B08417CrossRefGoogle Scholar
  13. Herring TA, King RW, McClusky SC (2006a) GAMIT: Reference Manual Version 10.34. Internal Memorandum, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  14. Herring TA, King RW, McClusky SC (2006b) GLOBK: Global Kalman filter VLBI and GPS analysis program Version 10.3. Internal Memorandum, Massachusetts Institute of Technology, CambridgeGoogle Scholar
  15. Kouba J, Ray J, Watkins M (1998). IGS Reference Frame realization. IGS 1998 Analysis Center Workshop – Proceedings Darmstadt. p 139Google Scholar
  16. Lavallée D, van Dam T, Blewitt G, Clarke P (2006) Geocenter motions from GPS: A unified observation model. J Geophys Res 111:B05405CrossRefGoogle Scholar
  17. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn 56:394–415CrossRefGoogle Scholar
  18. Mao A, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104:2797–2816CrossRefGoogle Scholar
  19. McCarthy D, Petit G (2004) IERS Technical Note 32 – IERS Conventions (2003) Technical report, Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am Main, GermanyGoogle Scholar
  20. Ray R, Altamimi Z, Collilieux X, Van Dam T (2007) Anomalous harmonics in the spectra of GPS position estimates. GPS Solut 12(1):55–64CrossRefGoogle Scholar
  21. Schmid R, Steigenberger P, Gendt G, Ge M, Rothacher M (2007) Generation of a consistent absolute phase-center correction model for GPS receiver and satellite antennas. J Geod 81:781–798CrossRefGoogle Scholar
  22. Schöne T, Schön N, Thaller D (2009) IGS Tide Gauge Benchmark Monitoring Pilot Project (TIGA): scientific benefits. J Geod 83:249–261CrossRefGoogle Scholar
  23. Steigenberger P, Rothacher M, Dietrich R, Fritsche M, Rülke A, Vey S (2006) Reprocessing of a global GPS network. J Geophys Res 111:B05402CrossRefGoogle Scholar
  24. Williams SDP (2008) CATS: GPS coordinate time series analysis software. GPS Solut 12(2):147–153CrossRefGoogle Scholar
  25. Wöppelmann G, McLellan S, Bouin M-N, Altamimi Z, Daniel L (2004) Current GPS data analysis at CLDG for the IGS TIGA Pilot Project. Cahiers du Centre Européen Géodynamique & de Sismologie 23:149–154Google Scholar
  26. Wöppelmann G, Martín Míguez B, Bouin M-N, Altamimi Z (2007) Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob Planet Change 57(3–4):396–406CrossRefGoogle Scholar
  27. Wöppelmann G, Letretel C, Santamaría A, Bouin M-N, Collilieux X, Altamimi Z, Williams S, Martín Míguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607CrossRefGoogle Scholar
  28. Zhang J, Bock Y, Johnson H, Fang P, Williams S, Genrich J, Wdowinski S, Behr J (1997) Southern California Permanent GPS Geodetic Array: error analysis of daily position estimates and site velocities. J Geophys Res 102:18035–18056CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alvaro Santamaría-Gómez
    • 1
    • 2
    Email author
  • Marie-Noëlle Bouin
    • 2
    • 3
  • Guy Wöppelmann
    • 4
  1. 1.Instituto Geográfico NacionalMadridSpain
  2. 2.Institut Géographique National, LAREG/GRGSChamps-sur-MarneFrance
  3. 3.CNRM/CMM, Météo FranceBrestFrance
  4. 4.Université de La Rochelle-CNRS, UMR 6250 LIENSSLa RochelleFrance

Personalised recommendations