Advertisement

Challenges in Deriving Trends from GRACE

  • A. EickerEmail author
  • T. Mayer-Guerr
  • E. Kurtenbach
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)

Abstract

The following contribution addresses some of the problems involved with the determination of long-term gravity field variations from GRACE satellite observations. First of all the choice of the time span plays a very important role, especially since it generally is a hard task to derive secular trends from only a few years of satellite data. Another issue, when one is interested in a single trend phenomenon, is the reduction of all other geophysical effects causing long-term gravity field variations. This paper uses the example of trends in continental hydrological water masses for the case of the High Plains aquifer to demonstrate some of the challenges implicated by trend analysis from GRACE.

Keywords

Gravity Field Geoid Height Glacial Isostatic Adjustment Spherical Harmonic Coefficient Pole Tide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank Volker Klemann from the GFZ for providing the GIA model. The support by the DFG (Deutsche Forschungsgemeinschaft) within the frame of the special priority program SPP1257 “Mass transport and mass distribution in the Earth system” is gratefully acknowledged.

References

  1. Bettadpur S (2007) UTCSR level-2 processing standards document for level-2 product release 0004. GR-03-03. CSR, Austin, TXGoogle Scholar
  2. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103. doi: 10.1029/2002JB002082 CrossRefGoogle Scholar
  3. Flechtner F (2005) GRACE AOD1B product description document (Rev. 2.1)Google Scholar
  4. Flechtner F (2007) GFZ level-2 processing standards document for level-2 product release 0004. GR-GFZ-STD-001. GFZ, PotsdamGoogle Scholar
  5. Flechtner F, Dahle Ch, Neumayer KH, Koenig R, Foerste Ch (2009) The release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F, Gruber T, Guentner A, Mandea M, Rothacher M, Wickert J (eds) Satellite geodesy and earth system science – observation of the earth from space. Springer, Berlin (in preparation)Google Scholar
  6. Han S-C, Shum CK, Bevis M, Ji C, Kuo C-Y (2006) Crustal dilatation observed by GRACE After the 2004 Sumatra-Andaman Earthquake. Science 313:658–662. doi: 10.1126/science.1128661 CrossRefGoogle Scholar
  7. Horwath M, Dietrich R (2009) Signal and error in mass change inferences from GRACE: the case of Antarctica. Geophys J Int 177(3):849–864. doi: 10.1111/j.1365-246X.2009.04139.x CrossRefGoogle Scholar
  8. Klemann V, Martinec Z (2009) Contribution of glacial-isostatic adjustment to the geocenter motion. Tectonophysics. doi: 10.1016/j.tecto.2009.08.031 Google Scholar
  9. Mayer-Gürr T, Eicker A, Ilk KH (2007) ITG-Grace03 gravity field model. http://www.geod.uni-bonn.de/itg-grace03.html
  10. McCarthy DD, Petit G (2004) IERS conventions 2003. IERS technical notes, 32 Verlag des Bundesamts fuer Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  11. Rodell M (2002) The potential for satellite-based monitoring of groundwater storage changes using GRACE: the High Plains aquifer, Central US. J Hydrol 63:245–256. doi: 10.1016/S0022-1694(02)00060-4 CrossRefGoogle Scholar
  12. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002. doi: 10.1038/nature08238 CrossRefGoogle Scholar
  13. Schmidt R, Petrovic S, Güntner A, Barthelmes F, Wünsch J, Kusche J (2008) Periodic components of water storage changes from GRACE and global hydrology models. J Geophys Res 113:B08419. doi: 10.1029/2007JB005363 CrossRefGoogle Scholar
  14. Steffen H, Denker H, Müller J (2008) Glacial isostatic adjustment in Fennoscandia from GRACE data and comparison with geodynamic models. J Geodyn 46(3–5):155–164. doi: 10.1016/j.jog.2008.03.002 CrossRefGoogle Scholar
  15. Steffen H, Petrovic S, Müller J, Schmidt R, Wünsch J, Barthelmes F, Kusche J (2009) Significance of secular trends of mass variations determined from GRACE solution. J Geodyn 48(3–5):157–165. doi: 10.1016/j.jog.2009.09.029 CrossRefGoogle Scholar
  16. Strassberg G, Scanlon BR, Chambers D (2009) Evaluation of groundwater storage monitoring with the GRACE satellite: case study of the High Plains aquifer, central United States. Water Res Int 45:W05410. doi: 10.1029/2008WR006892 Google Scholar
  17. Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607CrossRefGoogle Scholar
  18. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30, 20530, 229Google Scholar
  19. Watkins M, Yuan D-N (2007) JPL level-2 processing standards document for level-2 product release 04. ftp://podaac.jpl.nasa.gov/pub/grace/doc/
  20. Werth S, Güntner A, Schmidt R, Kusche J (2009) Evaluation of GRACE filter tools from a hydrological perspective. Geophys J Int 179(3):14991515CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformationUniversity of BonnBonnGermany

Personalised recommendations