Transforming ITRF Coordinates to National ETRS89 Realization in the Presence of Postglacial Rebound: An Evaluation of the Nordic Geodynamical Model in Finland

  • P. HäkliEmail author
  • H. Koivula
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


The IAG Reference Frame Sub-Commission for Europe (EUREF) created the European Terrestrial Reference System 89 (ETRS89) and fixed it to the Eurasian plate in order to avoid time evolution of the coordinates due to plate motions. However, the Fennoscandian area in Northern Europe is affected by postglacial rebound (PGR), causing intraplate deformations with respect to the stable part of the Eurasian tectonic plate.

The Nordic countries created their national ETRS89 realizations in the 1990s and have adopted them as the basis for geospatial data. As the most accurate GNSS processing is done in ITRS realizations, an accurate connection to national ETRS89 realizations is required. If the official EUREF transformation is used, residuals are up to 10 cm in the Nordic countries. Therefore, the Nordic Geodetic Commission (NKG) has created a 3-D intraplate velocity model NKG_RF03vel over Fennoscandia and a new transformation procedure to correct for the deformations caused by PGR.

This paper evaluates the NKG approach and compares it to the current recommendation given by EUREF with a 100-point ETRS89 realization in Finland. The results show that, by using a high-quality intraplate velocity model, the transformation residuals are reduced to the cm-level.


Land Uplift Reference Epoch Postglacial Rebound Common Reference Frame EUREF Permanent Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altamimi Z (2003) Discussion on how to express a regional GPS solution in the ITRF, EUREF Publication No. 12. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 162–167Google Scholar
  2. Altamimi Z, Boucher C (2002) The ITRS and ETRS89 Relationship: New Results from ITRF2000. EUREF Publication No. 10. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main, pp 49–52Google Scholar
  3. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the International Terrestrial Reference Frame for earth science applications. J Geophys Res 107(B10):2214. doi: 10.1029/2001JB000561 CrossRefGoogle Scholar
  4. Altamimi Z, Sillard P, Boucher C (2003) The impact of a no-net-rotation condition on ITRF2000. Geophys Res Lett 30(2):1064. doi:10.1029/2002GL016279, 2003CrossRefGoogle Scholar
  5. Boucher C, Altamimi Z (1992) The EUREF Terrestrial Reference System and its First Realization. Report on the Symposium of the IAG Subcommission for the European Reference Frame (EUREF) held in Florence 28–31 May 1990. Veröffentlichungen der Bayerischen Kommission Heft 52, MünchenGoogle Scholar
  6. Boucher C, Altamimi Z (2008) Memo: specifications for reference frame fixing in the analysis of a EUREF GPS campaign. Version 7: 24-10-2008Google Scholar
  7. EPN (2010) EPN cumulative solution GPS weeks 860–1540. Accessed 16 Mar 2010
  8. ITRF (2010a) Primary ITRF2000 solution. Accessed 16 Mar 2010
  9. ITRF (2010b) ITRF2005. Accessed 16 Mar 2010
  10. Jivall L, Lidberg M, Nørbech T, Weber M (2005) Processing of the NKG 2003 GPS Campaign. LMV-rapport 2005:7, Reports in Geodesy and Geographical Information Systems, Gävle 2005. Available at Accessed 16 Mar 2010
  11. Johansson JM, Davis JL, Scherneck H-G, Milne GA, Vermeer M, Mitrovica JX, Bennett RA, Jonsson B, Elgered G, Elósegui P, Koivula H, Poutanen M, Rönnäng BO, Shapiro II (2002) Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. J Geophys Res 107(B8):2157. doi: 10.1029/2001JB000400 CrossRefGoogle Scholar
  12. Kenyeres A (2010) Categorization of permanent GNSS reference stations. Bolletino di Geodesia e Scienze AffiniGoogle Scholar
  13. Legrand J, Bruyninx C (2008) EPN Reference Frame Alignment: Consistency of the Station Positions. EUREF 2008 Symposium, Brussels, Belgium, 18–21 June 2008Google Scholar
  14. Lidberg M (2008) Geodetic Reference Frames in Presence of Crustal Deformations. Integrating Generations, FIG Working Week 2008, Stockholm, Sweden, 14–19 June 2008Google Scholar
  15. Lidberg M, Johansson JM, Scherneck H-G, Davis JL (2007) An improved and extended GPS-derived 3D velocity field of the glacial isostatic adjustment (GIA) in Fennoscandia. J Geodesy 2007(81):213–230. doi: 10.1007/s00190-006-0102-4 CrossRefGoogle Scholar
  16. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustments in Fennoscandia. Science 291:2381–2385CrossRefGoogle Scholar
  17. Nocquet J-M, Calais E, Altamimi Z, Sillard P, Boucher C (2001) Intraplate deformation in western Europe deduced from an analysis of the ITRF97 velocity field. J Geophys Res 106(B6):11239CrossRefGoogle Scholar
  18. Nocquet J-M, Calais E, Parsons B (2005) Geodetic constraints on glacial isostatic adjustment in Europe. Geophys Res Lett 32:L06308. doi:10.1029/2004GL022174, 2005CrossRefGoogle Scholar
  19. Nørbech T, Engsager K, Jivall L, Knudsen P, Koivula H, Lidberg M, Madsen B, Ollikainen M, Weber M (2006) Transformation from a Common Nordic Reference Frame to ETRS89 in Denmark, Finland, Norway, and Sweden – status report. Also Paper C in Lidberg M (2007) Geodetic Reference Frames in Presence of Crustal Deformations. Ph.D. Thesis, Chalmers University of Technology, Göteborg, SwedenGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Geodesy and GeodynamicsFinnish Geodetic InstituteMasalaFinland

Personalised recommendations