Skip to main content

Enterobacter: Role in Plant Growth Promotion

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Growth Responses

Abstract

It is believed that inoculation with rhizobacteria containing plant growth promoting (PGP) characteristics consequently promote root and shoot growth. Further evaluation of these bacteria exhibiting multiple PGP traits on soil–plant system is needed to uncover their efficacy as effective PGP rhizobacteria (PGPR) or PGP bacteria (PGPB) depending upon their nature. The genera within the family Enterobacteriaceae that feature members described as PGPB are Citrobacter, Enterobacter, Erwinia, Klebsiella, Kluyvera, Pantoea and Serratia, although some of these genera also contain species reported to be plant pathogens. Genus Enterobacter is a Gram-negative, straight rod which is motile with peritrichous flagella and is facultatively anaerobic. Enterobacter spp. are known to have a wide range of PGP characteristics involving in nitrogen fixation, soil phosphorus solubilisation, production of antibiotics, having ability to secrete siderophore produce, chitinase, ACC deaminase, hydrolytic enzymes besides exopolysaccharides and in the enhancement of soil porosity. Numerous Enterobacter strains express these activities which promote plant growth and suppress soilborne plant pathogens. These PGP abilities of Enterobacter can make them a potential candidate suitable for plant growth and development. Due to their multifarious role in crop growth, a number of these strains have been developed commercially as plant growth promoters and biocontrol agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Khan MS (2010) Plant growth promoting activities of phosphate solubilizing Enterobacter asburiae as influenced by Fungicides. Eur Asia J Biosci 4:88–95

    Article  CAS  Google Scholar 

  • Andrews AE, Lawley B, Pittard AJ (1991) Mutational analysis of repression and activation of the tyrP gene in Escherichia coli. J Bacteriol 173:5068–5078

    PubMed  CAS  Google Scholar 

  • Bangera MG, Thomashaw LS (1996) Characterization of a genomic locus required for synthesis of the antibiotic 2,4-diacetylphloroglucinol by the biological control agent Pseudomonas fluorescens Q2-87. Mol Plant Microb Interact 9:83–90

    Article  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP, Enebak S (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7:1673–1685

    Article  PubMed  CAS  Google Scholar 

  • Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Boddey RM, Da Silva LG, Reis V, Alves BJR, Urquiaga S (2000) Assessment of bacterial nitrogen fixation in grass species. In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific, Wymondham, UK, pp 705–726

    Google Scholar 

  • Brandl MT, Lindow SE (1996) Cloning and characterization of a locus encoding an indolepyruvate decarboxylase involved in indole-3-acetic acid synthesis in Erwinia herbicola. Appl Environ Microbiol 62:4121–4128

    PubMed  CAS  Google Scholar 

  • Brenner DJ, Farmer J Jr (2005) In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 2. Springer, Berlin, Heidelberg, New York, pp 587–850

    Google Scholar 

  • Briely IJ, Thornton I (1983) Primary observation on the effect on heavy metals from mining and smelting on nitrogen-fixing bacteria in some British soils. Miner Environ 1:112–119

    Google Scholar 

  • Burd GI, Dixan DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668

    PubMed  CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    Article  PubMed  CAS  Google Scholar 

  • Campbell R, Greaves MP (1990) Anatomy and community structure of the rhizosphere. In: Lynch JM (ed) The rhizosphere. Wiley, Chichester, England, pp 11–34

    Google Scholar 

  • Campillo R, Urquiaga S, Undurraga P, Pino I, Boddey RM (2005) Strategies to optimise biological nitrogen fixation in legume/grass pastures in the southern region of Chile. Plant Soil 273:57–67

    Article  CAS  Google Scholar 

  • Cao H, Baldini RL, Rahme LG (2001) Common mechanisms for pathogens of plants and animals. Annu Rev Phytopathol 39:259–284

    Article  PubMed  CAS  Google Scholar 

  • Carlot M, Giacomini A, Casella S (2002) Aspects of plant-microbe interactions in heavy metal polluted soil. Acta Biotechnol 22:13–20

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corana F (1994) Copper resistance mechanism in bacteria and fungi. FEMS Microbiol Rev 14:121–137

    Article  PubMed  CAS  Google Scholar 

  • Chanway CP, Holl FB (1993) First year yield performance of spruce seedlings inoculated with plant growth promoting rhizobacteria. Can J Microbiol 39:1084–1088

    Article  Google Scholar 

  • Chincholkar SB, Chaudhari BL, Rane MR, Sarode PD (2007) Fungal phytopathogen suppression using siderophoregenic bio-inoculants. In: Mukerji KG, Chincholkar SB (eds) Biological control of plant diseases: current concepts. Haworth Press, USA, pp 401–417

    Google Scholar 

  • Chung YR, Brenner DJ, Steigerwalt AG, Kim BS, Kim HT, Cho KY (1993) Enterobacter pyrinus sp. nov. an organism associated with brown leaf spot disease of pear trees. Int J Syst Bacteriol 43:157–161

    Article  Google Scholar 

  • Conrad R (1996) Soil micro-organisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O, and NO). Microbiol Rev 60:609–643

    PubMed  CAS  Google Scholar 

  • Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31:17–23

    Google Scholar 

  • Costacurta A, Keijers V, Vanderleyden J (1994) Molecular cloning and sequence analysis of an Azospirillum brasilense indole-3-pyruvate decarboxylase gene. Mol Gen Genet 243:463–472

    PubMed  CAS  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Metraux JP, Hofte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microb Interact 12:450–458

    Article  Google Scholar 

  • Deepa CK, Dastager SG, Pandey A (2010) Isolation and characterization of plant growth promoting bacteria from non rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World J Microbiol Biotechnol 26:1233–1240

    Article  CAS  Google Scholar 

  • Dickey RS, Zumoff CH (1988) Emended description of Enterobacter cancerogenus comb. nov. (formerly Erwinia cancerogena). Int J Syst Bacteriol 38:371–374

    Article  Google Scholar 

  • English MM, Coulson TJD, Horsman SR, Patten CL (2010) Overexpression of hns in the plant growth-promoting bacterium Enterobacter cloacae UW5 increases root colonization. J Appl Microbiol 108:2180–2190

    PubMed  CAS  Google Scholar 

  • Farmer J Jr (2005) In: Garrity GM (ed) Bergey’s manual of systematic bacteriology, vol 2B. Springer, New York, pp 694–698

    Google Scholar 

  • Forlani G, Mantelli M, Branzoni M, Nielsen F, Favilli F (1995) Differential sensitivity of plant-associated bacteria to sulfonylurea and imidazolinone herbicides. Plant Soil 176:243–253

    Article  CAS  Google Scholar 

  • Fravel DR (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342

    PubMed  CAS  Google Scholar 

  • Garrity GM (2005) Bergey’s manual of systematic bacteriology, vol 2. Springer, Berlin, Heidelberg, New York, pp 1–1085

    Book  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goldstein AH (1995) Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. Biol Agric Hortic 12:185–193

    Article  Google Scholar 

  • Grimont F, Grimont PA (1992) The genus Enterobacter. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The procaryotes. Springer, New York, pp 2797–2815

    Google Scholar 

  • Gyaneshwar P, Parekh LJ, Archana G, Poole PS, Collins MD, Hustson RA (1999) Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae PSI3. FEMS Microbiol Lett 171:223–229

    Article  CAS  Google Scholar 

  • Hasnain S, Sabri AN (1996) Growth stimulation of Triticum aestivum seedlings under Cr-stresses by non rhizospheric pseudomonad strains. In: Abstracts of the 7th international symposium on biological nitrogen fixation with non-legumes, p 36

    Google Scholar 

  • Hazel JR, Williams EE (1990) The role of alteration in membrane lipid composition in enabling physiological adaptation of organisms to their physical environment. Prog Lipid Res 29:167–227

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann H, Roggenkamp A (2003) Population genetics of the nomenspecies Enterobacter cloacae. Appl Environ Microbiol 69:5306–5318

    Article  PubMed  CAS  Google Scholar 

  • Hoffmanna H, Stindlb S, Stumpf A, Mehlen A, Monget D, Heesemann J, Schleifer KH, Roggenkamp A (2005) Description of Enterobacter ludwigii sp. nov., a novel Enterobacter species of clinical relevance. Syst Appl Microbiol 28:206–212

    Article  CAS  Google Scholar 

  • Hommais F, Krin E, Laurent-Winter C, Soutourina O, Malpertuy A, Le Caer JP, Danchin A, Bertin P (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 40:20–36

    Article  PubMed  CAS  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of l-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 42:825–1831

    Article  Google Scholar 

  • Hormaeche E, Edwards PR (1960) A proposed genus Enterobacter. Int Bull Bacteriol Nomencl Taxon 10:71–74

    Google Scholar 

  • Inoue K, Sugiyama K, Kosako Y, Sakazaki R, Yamai S (2000) Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr Microbiol 41:417–420

    Article  PubMed  CAS  Google Scholar 

  • Inoune M, Ninomiya S, Tohoyama H, Joho M, Murayama T (1994) Different characteristics of roots in the cadmium tolerance and Cd binding complex formation between mono- and dicotyledenous plants. J Plant Res 107:201–207

    Article  Google Scholar 

  • Jackson MB (1997) Hormones from roots as signal for the shoots of stressed plants. Trends Plant Sci 2:22–28

    Article  Google Scholar 

  • James EK (2000) Nitrogen fixation in endophytic and associative symbiosis. Field Crop Res 65:197–209

    Article  Google Scholar 

  • James EK, Olivares FL, Baldani JI, Döbereiner J (1997) Herbaspirillum, an endophytic diazotroph colonizing vascular tissue in leaves of Sorghum bicolor L. Moench. J Exp Bot 48:785–797

    Article  CAS  Google Scholar 

  • Jha CK (2011) Isolation Characterization and development of consortia of PGPR for the growth of Jatropha curcas. Ph.D thesis, Gujarat University.

    Google Scholar 

  • Jia YJ, Ito H, Matsui H, Honma M (2006) 1-Aminocyclopropane-1-carboxylate (ACC) deaminase induced by ACC synthesized and accumulated in Penicillium citrinum intracellular spaces. Biosci Biotechnol Biochem 64:299–305

    Article  Google Scholar 

  • Kampfer P, Steiof M, Dott W (1991) Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251

    Article  Google Scholar 

  • Kampfer P, Ruppelb S, Remus R (2005) Enterobacter radicincitans sp. nov., a plant growth promoting species of the family Enterobacteriaceae. Syst Appl Microbiol 28:213–221

    Article  PubMed  CAS  Google Scholar 

  • Kavita B, Shukla S, Naresh Kumar G, Archana G (2008) Amelioration of phytotoxic effects of Cd on mung bean seedlings by gluconic acid secreting rhizobacterium Enterobacter asburiae PSI3 and implication of role of organic acid. World J Microbiol Biotechnol 24:2965–2972

    Article  CAS  Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  PubMed  CAS  Google Scholar 

  • Lankford CE (1973) Bacterial assimilation of iron. Crit Rev Microbiol 2:273–331

    Article  CAS  Google Scholar 

  • Lehner A, Riedel K, Eberl L, Breeuwer P, Diep B, Stephan R (2005) Biofilm formation, EPS production and cell-to-cell signalling in various Enterobacter sakazakii strains: aspects promoting environmental persistence. J Food Prot 68:2287–2294

    PubMed  CAS  Google Scholar 

  • Lehner A, Grimm M, Rattei T, Ruepp A, Frishman D, Manzardo GGG, Stephan R (2006) Cloning and characterization of Enterobacter sakazakii pigment genes and in situ spectroscopic analysis of the pigment. FEMS Microbiol Lett 265:244–248

    Article  PubMed  CAS  Google Scholar 

  • Lelliott RA (1974) Genus XII. Erwinia Winslow, Broadhurst, Buchanan, Krumweide, Rogers and Smith 1920. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, pp 332–339

    Google Scholar 

  • Lelliott RA, Dickey RS (1984) Genus VII. Erwinia Winslow, Broadhurst, Buchanan, Krumwiede, Rogers and Smith 1920. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 469–476

    Google Scholar 

  • Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC (2006) H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog 2:81

    Article  Google Scholar 

  • Malik KA, Bilal R, Mehnaz S, Rasul G, Mirza MS, Ali S (1997) Association of nitrogen-fixing, plant growth-promoting rhizobacteria (PGPR) with kallar grass and rice. Plant Soil 194:37–44

    Article  CAS  Google Scholar 

  • Martinez-Granero F, Rivilla R, Martin M (2006) Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol 72:3429–3434

    Article  PubMed  CAS  Google Scholar 

  • Metwally A, Safronova V, Belimov AA, Dietz KJ (2005) Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot 56:167–178

    PubMed  CAS  Google Scholar 

  • Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236–238

    Article  PubMed  CAS  Google Scholar 

  • Nigam R, Srivastva S, Prakash S, Srivastava MM (2000) Effect of organic acids on availability of cadmium in wheat. Chem Spec Bioavailab 12:125–132

    Article  CAS  Google Scholar 

  • O’Hara CM, Steigerwalt AG, Hill BC, Farmer JJ 3rd, Fanning GR, Brenner DJ (1989) Enterobacter hormaechei a new species of the family Enterobacteriaceae formerly known as enteric group 75. J Clin Microbiol 27:2046–2049

    PubMed  Google Scholar 

  • Ohsumi Y, Katsuhiko K, Yasuhiro A (1988) Changes induced in the permeability barrier of the yeast plasma membrane by cupric ion. J Bacteriol 170:2676–2682

    PubMed  CAS  Google Scholar 

  • Ono S, Goldberg MD, Olsson T, Esposito D, Hinton JC, Ladbury JE (2005) H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. Biochem J 391:203–213

    Article  PubMed  CAS  Google Scholar 

  • Paradis S, Boissinot M, Paquette N, Bélanger SD, Martel EA, Boudreau DK, Picard FJ, Ouellette M, Roy PH, Bergeron MG (2005) Phylogeny of the Enterobacteriaceae based on genes encoding elongation factor Tu and F-ATPase β-subunit. Int J Syst Evol Microbiol 55:2013–2025

    Article  PubMed  CAS  Google Scholar 

  • Parker DR, Pedler JF (1998) Probing the malate hypothesis of differential aluminium tolerance in wheat by using other rhizotoxic ions as proxies for Al. Planta 205:389–396

    Article  CAS  Google Scholar 

  • Pavan ME, Franco RJ, Rodriguez JM, Gadaleta P, Abbott SL, Janda JM, Zorzópulos J (2005) Phylogenetic relationships of the genus Kluyvera: transfer of Enterobacter intermedius Izard et al. 1980 to the genus Kluyvera as Kluyvera intermedia comb. nov. and reclassification of Kluyvera cochleae as a later synonym of K. intermedia. Int J Syst Evol Microbiol 55:437–442

    Article  PubMed  CAS  Google Scholar 

  • Persello-Cartieaux F (2003) Tales from the underground: molecular plant–rhizobia interactions. Plant Cell Environ 26:189–199

    Article  CAS  Google Scholar 

  • Pittard J, Camakaris H, Yang J (2005) The TyrR regulon. Mol Microbiol 55:16–26

    Article  PubMed  CAS  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF, Shoa J, Thomkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902

    Article  PubMed  CAS  Google Scholar 

  • Riedel K, Lehner A (2007) Identification of proteins involved in osmotic stress response in Enterobacter sakazakii by proteomics. Proteomics 7:1217–1231

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Díaz M, Belén RG, Clementina PC, Maria Victoria M, Jesús G (2008) A review on the taxonomy and possible screening traits of plant growth promoting rhizobacteria. In: Iqbal A, John P, Shamsul H (eds) Plant–bacteria interactions. strategies and techniques to promote plant growth. WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim

    Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant Microb Interact 20:430–440

    Article  CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:527–556

    Article  PubMed  CAS  Google Scholar 

  • Ryu RJ, Patten CL (2008) Aromatic amino acid-dependent expression of indole-3 pyruvate decarboxylase is regulated by TyrR in Enterobacter cloacae UW5. J Bacteriol 190:7200–7208

    Article  PubMed  CAS  Google Scholar 

  • Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wie H-X (2003) Bacterial volatiles promote growth of Arabidopsis. Proc Natl Acad Sci USA 100:4927–4932

    Article  PubMed  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    Article  CAS  Google Scholar 

  • Saraf M, Jha CK, Patel D (2010) The role of ACC deaminase producing PGPR in sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin, pp 365–385

    Chapter  Google Scholar 

  • Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Iversen C, Gontia I, Stephan R, Hofmann A, Hartmann A, Jha B, Eberl L, Riedel K, Lehner A (2009) Evidence for a plant-associated natural habitat for Cronobacter spp. Res Microbiol 160:608–614

    Article  PubMed  Google Scholar 

  • Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843

    Article  PubMed  CAS  Google Scholar 

  • Shoebitz M, Claudia MR, Martín AP, María LC, Luigi C, José AC (2009) Plant growth promoting properties of a strain of Enterobacter ludwigii isolated from Lolium perenne rhizosphere. Soil Biol Biochem 41:1768–1774

    Article  CAS  Google Scholar 

  • Siebert M, Sommer S, Li SM, Wang ZX, Severin K (1996) Genetic engineering of plant secondary metabolism. Accumulation of 4-hydroxybenzoate glucosides as a result of the expression of the bacterial ubiC gene in tobacco. Plant Physiol 112:811–819

    Article  PubMed  CAS  Google Scholar 

  • Singh N, Pandey P, Dubey RC, Maheshwari DK (2008) Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii by rhizosphere competent Bacillus subtilis BN1. World J Microbiol Biotechnol 24:1669–1679

    Article  Google Scholar 

  • Singh N, Kumar S, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Biocontrol of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promontory activity in chir pine. Crop Prot 29:1142–1147

    Article  Google Scholar 

  • Sinha S, Mukherjee SK (2008) Cadmium-induced siderophore production by a high Cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr Microbiol 56:55–60

    Article  PubMed  CAS  Google Scholar 

  • Stella S, Falconi M, Lammi M, Gualerzi CO, Pon CL (2006) Environmental control of the in vivo oligomerization of nucleoid protein H-NS. J Mol Biol 355:169–174

    Article  PubMed  CAS  Google Scholar 

  • Taghavi S, Lelie D, Hoffman A, Zhang YB, Walla MD, Vangronsveld J, Newman L, Monchy S (2010) Genome sequence of the plant growth promoting endophytic bacterium Enterobacter sp. 638. PLoS Genet 6:1–15

    Article  CAS  Google Scholar 

  • Triplett E (1996) Diazotrophic endophytes: progress and prospects for nitrogen fixation in monocots. Plant Soil 186:29–38

    Article  CAS  Google Scholar 

  • Turnbull GA, Morgan JA, Whipps JM, Saunders JR (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • UroSevie B (1966) Rakovina topolu piisobenFi-baktkrii Erwinia cuncerogena n. sp. Lesnicky Casopis 12:493–505

    Google Scholar 

  • Vansuy G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant Microb Interact 20:441–447

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Wang KL, Li H, Ecker JR (2002) Ethylene biosynthesis and signaling networks. Plant Cell 14:131–151

    Google Scholar 

  • Weigel C, Schmidt A, Ruckert B, Lurz R, Messer W (1997) DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC. EMBO J 16:6574–6583

    Article  PubMed  CAS  Google Scholar 

  • Windstam S, Nelson EB (2008) Differential interference with Pythium ultimum sporangial activation and germination by Enterobacter cloacae in the corn and cucumber spermospheres. Appl Environ Microbiol 74:4285–4291

    Article  PubMed  CAS  Google Scholar 

  • Yang HL, Sun XL, Song W, Wang YS, Cai MY (1999) Screening, identification and distribution of endophytic associative diazotrophs isolated from rice plants. Acta Bot Sin 41:927–931

    Google Scholar 

  • Zhang H, Xie X, Kim M-S, Kornyeyev DA, Holaday S, Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Zhender GW, Yao C, Murphy JF, Sikora ER, Kloepper JW, Schuster DJ, Polston JE (1999) Microbe induced resistance against pathogens and herbivores: evidence of effectiveness in agriculture. In: Agarwal AA, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores: biochemistry, ecology and agriculture. APS, St. Paul, MN, p 33

    Google Scholar 

Download references

Acknowledgement

Funding for this study was obtained by Lead author, Prof. Meenu Saraf, from British Petroleum International Ltd. (BP). Chaitanya Kumar Jha is thankful to BP international Ltd., for their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jha, C.K., Aeron, A., Patel, B.V., Maheshwari, D.K., Saraf, M. (2011). Enterobacter: Role in Plant Growth Promotion. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_8

Download citation

Publish with us

Policies and ethics