Skip to main content

Role of Pseudomonas aurantiaca in Crop Improvement

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Growth Responses

Abstract

Pseudomonas aurantiaca SR1 was initially identified by the BIOLOG method and, later, by partial sequencing of the 16 S ribosomal RNA gene. This strain produces 2,4-diacetylphloroglucinol, siderophores and hydrogen cyanide; also, it was found to inhibit the growth of different pathogenic fungi and to promote plant growth by phytohormone-like mechanisms, through the production of indole-3-acetic acid. P. aurantiaca SR1, either alone or in combination with Sinorhizobium meliloti 3DOh13/Bradyrhizobium japonicum E109, was used to evaluate its effect on alfalfa and soybean growth. Coinoculation of alfalfa with P. aurantiaca SR1 and S. meliloti 3DOh13 resulted in the formation of a higher number of nodules as compared to single inoculation with the Sinorhizobium strain, under sterile conditions. Plant N content was also significantly increased in coinoculation experiments. Additionally, a plant growth-promoting effect on soybean was observed. Coinoculation of P. aurantiaca SR1 and B. japonicum E109 caused an increase in dry matter accumulation of both shoot and root system, although the number of nodules did not significantly differ from that of single inoculation with B. japonicum. Thus, our studies suggest a potential use of combinations of this strain and rhizobia in order to improve growth of alfalfa and soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    Article  CAS  Google Scholar 

  • Andrés JA, Correa NS, Rosas SB (1998) Alfalfa and soybean seed and root exudates treated with thiram inhibit the expression of rhizobia nodulation genes. Phyton Int J Exp Bot 62:47–53

    Google Scholar 

  • Asghar HN, Zahir ZA, Arshad M (2004) Screening rhizobacteria for improving the growth, yield and oil content of canola (Brassica napus L.). Aust J Agric Res 55:187–194

    Article  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sreehari Rao M, Sunish Kumar R, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as a fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937

    Article  PubMed  CAS  Google Scholar 

  • Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781

    Article  Google Scholar 

  • Baker WH, Thompson TL (1992) Determination of total nitrogen in plant samples by Kjeldahl. In: Plank CO (ed) Plant analysis reference procedures for the southern region of the United States, Series Bulletin 368, The University of Georgia, pp 13–16

    Google Scholar 

  • Bakker AW, Schippers B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth-stimulation. Soil Biol Biochem 19:451–457

    Article  CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth promoting rhizobacteria. Biocontr Sci Technol 11:557–574

    Article  Google Scholar 

  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant-depended genotypic and phenothypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants. Appl Environ Microbiol 68:3328–3338

    Article  PubMed  CAS  Google Scholar 

  • Bolton H Jr, Ellio LF, Turco RF, Kennedy AC (1990) Rhizoplane colonization of pea seedlings by Rhizobium leguminosarum and a deleterious root colonizing Pseudomonas sp. and effects on plant growth. Plant Soil 123:121–124

    Google Scholar 

  • Bonsall RF, Weller DM, Thomashow LS (1997) Quantification of 2,4-diacetylphloroglucinol produced by fluorescent Pseudomonas spp. in vitro and in the rhizosphere of wheat. Appl Environ Microbiol 63:951–955

    PubMed  CAS  Google Scholar 

  • Carlier E, Rovera M, Rossi Jaume AD, Rosas SB (2008) Improvement of growth, under field conditions, of wheat inoculated with Pseudomonas aurantiaca SR1. World J Microbiol Biotechnol 24:2653–2658

    Article  Google Scholar 

  • Chebotar VK, Asis CA Jr, Asao S (2001) Production of growth-promoting substances and high colonization ability of rhizobacteria enhance the nitrogen fixation of soybean when coinoculated with Bradyrhizobium japonicum. Biol Fertil Soils 34:427–432

    CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Mulders IHM, Dekkers LC, Lugtenberg BJJ (2000) Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL 1931 is essential for biocontrol of tomato foot and root rot. Mol Plant-Microbe Interact 10:79–86

    Article  Google Scholar 

  • Cronin D, Moënne-Loccoz Y, Fenion A, Dunne C, Dowling DN, O’Gara F (1997) Role of 2,4-diacethylphloroglucinol in the interactions of the biocontrol Pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed  CAS  Google Scholar 

  • Dashti N, Zhang F, Hynes R, Smith DL (1998) Plant growth promoting rhizobacteria accelerate nodulation and increase nitrogen fixation activity by field growth soybean [Glycine max (L) Merr.] under short season conditions. Plant Soil 200:205–213

    Article  CAS  Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate-solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • De Leij FA, Dichon-Hardy J, Lynch JM (2002) Effect of 2,4-diacetylphloroglucinol-producing and non-producing strains of Pseudomonas fluorescens on root development of pea seedlings in three different soil types and its effect on nodulation by Rhizobium. Biol Fertil Soils 35:114–121

    Article  Google Scholar 

  • Derylo M, Skorupska A (1993) Enhancement of symbiotic nitrogen fixation by vitamin-secreting fluorescent Pseudomonas. Plant Soil 54:211–217

    Article  Google Scholar 

  • Dubeikovsky AN, Mordukhova EA, Kochetkov VV, Polikarpova FY, Boronin AM (1993) Growth promotion of blackcurrant softwood cuttings by recombinant strain Pseudomonas fluorescens BSP53a synthesizing and increased amount of indole-3-acetic acid. Soil Biol Biochem 25:1277–1281

    Article  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • El-Komy HMA (2005) Coimmobilization of A. lipoferum and B. megaterium for plant nutrition. Food Technol Biotechnol 43:19–27

    Google Scholar 

  • Esipov SE, Adanin VM, Baskunov BP, Kiprianova EA, Garagulia AD (1975) New antibiotically active fluoroglucide from Pseudomonas aurantiaca. Antibiotiki 20:1077–1081

    PubMed  CAS  Google Scholar 

  • Feklistova IN, Maksimova NP (2008) Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77:176–180

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Martínez CR, Burity HA, Chanway CP (2008) Plant growth promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.). W J Microbiol Biotechnol 24:1187–1193

    Article  CAS  Google Scholar 

  • Fridlender M, Inbar J, Chet I (1993) Biological control of soil borne plant pathogens by a ß-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  CAS  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Grimes HD, Mount MS (1984) Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol Biochem 16:27–30

    Article  Google Scholar 

  • Hamaoui B, Abbadi JM, Burdman S, Rashid A, Sarig S, Okon Y (2001) Effects of inoculation with Azospirillum brasilense on chickpea (Cicer arietinum) and faba beans (Vicia faba) under different growth conditions. Agronomie 21:553–560

    Article  Google Scholar 

  • Hill DS, Stein RI, Torkewitz NR, Morse AM, Howell CR, Pachlatko JP, Becker JO, Ligon JM (1994) Cloning of genes involved in the synthesis of pyrrolnitrin from Pseudomonas fluorescens and role of pyrrolnitrin synthesis in biological control of plant disease. Appl Environ Microbiol 60:78–85

    PubMed  CAS  Google Scholar 

  • Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ, Kim YC (2006) Production of idole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52:473–476

    Article  PubMed  CAS  Google Scholar 

  • Keel C, Wirthner PH, Oberhansii TH, Voisard C, Burger P, Hass D, Défago G (1990) Pseudomonads as antagonists of plants pathogens in the rhizosphere role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327–341

    CAS  Google Scholar 

  • Keel C, Snider U, Maurhofer M, Voisard C, Laville J, Burger P, Wirthner PH, Hass D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Kloepper JW, Hume DT, Scher FM, Singleton C, Tipping B, Laliberte M, Franley K, Kutchaw T, Simonson C, Lifshitz R, Zaleska I, Lee L (1988) Plant growth promoting rhizobacteria on canola (rapeseed). Plant Dis 72:42–46

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Knight TJ, Langston-Unkefer PJ (1988) Enhancement of symbiotic dinitrogen fixation by a toxin-releasing plant pathogen. Science 241:951–994

    Article  PubMed  CAS  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 61:849–854

    PubMed  CAS  Google Scholar 

  • Lattanzi AR (2002) Manejo del cultivo de la soja en Argentina–Actualizaciones. In: Baigorri EJ (ed) Instituto Nacional de Tecnología Agropecuaria (INTA). Marcos Juárez, Argentina, p 3

    Google Scholar 

  • Li DM, Alexander M (1988) Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219

    Article  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth-promoting rhizobacteria. Phytopathology 85:695–698

    Article  Google Scholar 

  • Lucas García JA, Probanza A, Ramos B, Barriuso J, Gutiérrez Mañero FJ (2004) Effects of inoculation with plant growth promoting rhizobacteria (PGPR) and Sinorhizobium fredii on biological nitrogen fixation, nodulation and growth of Glycine max cv Osumi. Plant Soil 267:143–153

    Article  Google Scholar 

  • Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13

    Article  PubMed  CAS  Google Scholar 

  • Mandryk MN, Kolomiets E, Dey ES (2007) Characterization of antimicrobial compounds produced by Pseudomonas aurantiaca S-1. Pol J Microbiol 56:245–250

    PubMed  CAS  Google Scholar 

  • Maurhofer M, Keel C, Schnider U, Voisard C, Haas D, Défago G (1991) Influence of enhanced antibiotic production in Pseudomonas fluorescens CHA0 on its disease suppressive capacity. Phytopathology 82:190–195

    Article  Google Scholar 

  • Mehnaz S, Noreen Baig D, Jamil F, Weselowski B, Lazarovits G (2009) Characterization of a phenazine and hexanoyl homoserine lactone producing Pseudomonas aurantiaca strain PB-St2, isolated from sugarcane stem. J Microbiol Biotechnol 19:1688–1694

    PubMed  CAS  Google Scholar 

  • Nielsen MN, Sørensen J, Fels J, Pedersen HC (1998) Secondary metabolite and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    PubMed  CAS  Google Scholar 

  • Nowak-Thompson B, Hammer PE, Hill DS, Stafford J, Torkewitz N, Gaffney TD, Lam ST, Molnár I, Ligon JM (2003) 2,5-dialkylresorcinol biosynthesis in Pseudomonas aurantiaca: novel head-to-head condensation of two fatty acid-derived precursors. J Bacteriol 185:860–869

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol Rev 56:662–676

    PubMed  Google Scholar 

  • Oberhansli T, Defago G, Hass D (1990) Indole-3-acetic acid (IAA) synthesis in the biocontrol strain CHAO of Pseudomonas fluorescens: role of tryptophan side chain oxidase. J Gen Microbiol 137:2273–2279

    Google Scholar 

  • Pandey P, Maheshwari DK (2007) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Patten CL, Glick BR (2002) The role of Pseudomonas putida indoleacetic acid in the development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Peix A, Valverde A, Rivas R, Igual JM, Ramírez-Bahena MH, Mateos PF, Santa-Regina I, Rodríguez-Barrueco C, Martínez-Molina E, Velázquez E (2007) Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three supspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov. Int J Syst Evol Microbiol 57:1286–1290

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, Ulami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie van Leenwenhoek 81:537–547

    Article  CAS  Google Scholar 

  • Rachid D, Ahmed B (2005) Effect of iron and growth inhibitors on siderophores production by Pseudomonas fluorescens. Afr J Biotechnol 4:697–702

    CAS  Google Scholar 

  • Relic B, Perret X, Estrada-García MT, Kopcinska J, Golinowski W, Krishnan HB, Pueppke SG, Broughton WJ (1994) Nod factors of Rhizobium are a key to the legume door. Mol Microbiol 13:171–178

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez F, Pfender WF (1997) Antibiosis and antagonism of Sclerotinia homeocarpa and Drechslera poae by Pseudomonas fluorescens PF-5 in vitro and in planta. Phytopathology 87:614–621

    Article  PubMed  Google Scholar 

  • Rosas SB, Altamirano FE, Schröder E, Correa NS (2001) In vitro biocontrol activity of Pseudomonas aurantiaca.. Phyton Int J Exp Bot 67:203–209

    Google Scholar 

  • Rosas SB, Rovera M, Andrés JA, Pastor NA, Guiñazú LB, Carlier E, Avanzini GV, Correa NS (2005) Characterization of Pseudomonas aurantiaca as biocontrol and PGPR agent. In: Sorvari S, Toldi O (eds) Endophytes and biocontrol agents. Lapland, Finland, pp 91–99

    Google Scholar 

  • Rosas SB, Andrés JA, Rovera M, Correa NS (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia – legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Rosas SB, Avanzini GV, Carlier E, Pasluosta CJ, Pastor NA, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806

    Article  CAS  Google Scholar 

  • Ross IL, Alami Y, Harvey PR, Achouak W, Ryder MH (2000) Genetic diversity and biological control activity of novel species of closely related Pseudomonads isolated from wheat field soils in South Australia. Appl Environ Microbiol 66:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Rovera M, Cabrera S, Rosas S, Correa N (2000) Characterization of antifungal agent produced by Pseudomonas aurantiaca for the use as biocontrol inoculant. In: Pedrosa FO, Hungría M, Yates MG, Newton WE (eds) Nitrogen fixation: from molecules to crop productivity. Kluwer, Dordrecht, p 602

    Google Scholar 

  • Rudrappa T, Baiss HP (2008) Rhizospheric pseudomonads. Friends or foes? Plant Signal Behav 3:1132–1133

    Article  PubMed  Google Scholar 

  • Samac DA, Willert AM, Mc Bride MJ, Kinkel LL (2003) Effects of antibiotic producing Streptomyces on nodulation and leaf spot in alfalfa. Appl Soil Ecol 22:55–66

    Article  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of growth of green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    Article  CAS  Google Scholar 

  • Suzuki S, He Y, Oyaizu H (2003) Indole-3-acetic acid production in Pseudomonas fluorescens HP72 and its association with suppression of creeping bentgrass brown patch. Curr Microbiol 47:138–143

    Article  PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid of fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Tilak K, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  • Vance C (1997) Enhanced agricultural sustainability through biological nitrogen fixation. In: Legocki A, Bothe A, Pühler A (eds) Biological fixation of nitrogen for ecology and sustainable agriculture. Springer, Berlin, pp 179–186

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viglizzo EF (1995) El rol de la alfalfa en los sistemas de producción. In: Hijano EH, Navarro A (eds) La alfalfa en la Argentina. Instituto Nacional de Tecnología Agropecuaria (INTA). Buenos Aires, Argentina, pp 260–272

    Google Scholar 

  • Villacieros M, Power B, Sánchez-Contreras M, Lloret J, Cruezabal RI, Martin M, Fernández-Pinas F, Bonilla I, Wheln C, Dowling DN, Riilla R (2003) Colonization behaviour of Pseudomonas fluorescens and Sinorhizobium meliloti in the alfalfa (Medicago sativa) rhizosphere. Plant Soil 251:47–54

    Article  CAS  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root nodule bacteria. International biology programme handbook No 15. Blackwell, Oxford, pp 75–76

    Google Scholar 

  • Viswanathan R, Samiyappan R (2007) Siderophores and iron nutrition on the pseudomonas mediated antagonism against Colletotrichum falcatum in sugarcane. Sugar Tech 9:57–60

    Article  CAS  Google Scholar 

  • Voisard C, Keel C, Hass D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Wang Y, Brown HN, Crowley DE, Szaniszlo PJ (1993) Evidence for direct utilization of a siderophore, ferrioxamine B, in axenically grown cucumber. Plant Cell Environ 16:579–585

    Article  CAS  Google Scholar 

  • Weller DM, Thomashow LS (1993) Advances in rhizobacteria for biocontrol. Curr Opin Biotechnol 4:306–311

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Secretaría de Ciencia y Técnica of Universidad Nacional de Río Cuarto, Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier A. Andrés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Andrés, J.A., Rovera, M., Guiñazú, L.B., Pastor, N.A., Rosas, S.B. (2011). Role of Pseudomonas aurantiaca in Crop Improvement. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Growth Responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20332-9_5

Download citation

Publish with us

Policies and ethics