Colour Image Quality Assessment Using the Combined Full-Reference Metric

  • Krzysztof Okarma
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)


In the paper the application of the combined image quality metric for the assessment of colour images is discussed. Proposed technique belongs to the group of full-reference objective methods, which require the exact knowledge of the reference image but ensure high universality and independence on the image contents. The combined metric discussed in the paper is based on three recently proposed approaches:Multi-Scale Structural Similarity, Visual Information Fidelity and RSVD metric utilising the Singular Value Decomposition. The verification of its linear correlation with subjective quality evaluations has been performed using two publicly available colour image databases: LIVE and TID2008.


colour image quality assessment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, G.H., Yang, C.L., Xie, S.L.: Gradient-based structural similarity for image quality assessment In: Proc. Int. Conf. Image Processing, pp. 2929–2932 (2006)Google Scholar
  2. 2.
    Engelke, U., Kusuma, M., Zepernick, H.-J., Caldera, M.: Reduced-reference metric design for objective perceptual quality assessment in wireless imaging. Signal Processing: Image Communication 24(7), 525–547 (2009)CrossRefGoogle Scholar
  3. 3.
    Engelke, U., Zepernick, H.-J.: Optimal Region-of-Interest based visual quality assessment. In: Proc. SPIE Human Vision and Electronic Imaging, vol. 7240 (2009)Google Scholar
  4. 4.
    Eskicioglu, A., Fisher, P., Chen, S.: Image quality measures and their performance. IEEE Trans. Comm. 43(12), 2959–2965 (1995)CrossRefGoogle Scholar
  5. 5.
    Eskicioglu, A.: Quality measurement for monochrome compressed images in the past 25 years. In: Proc. Int. Conf. Acoust. Speech Signal Proc., pp. 1907–1910 (2000)Google Scholar
  6. 6.
    Le Callet, P., Autrusseau, F.: Subjective quality assessment IRCCyN/IVC database (2005),
  7. 7.
    Li, C., Bovik, A.: Three-component weighted Structural Similarity index. In: Proc. SPIE Image Quality and System Performance, vol. 7242 (2009)Google Scholar
  8. 8.
    Mahmoudi-Aznaveh, A., Mansouri, A., Torkamani-Azar, F., Eslami, M.: Image quality measurement besides distortion type classifying. Optical Review 16(1), 30–34 (2009)CrossRefGoogle Scholar
  9. 9.
    Mansouri, A., Mahmoudi-Aznaveh, A., Torkamani-Azar, F., Jahanshahi, J.A.: Image quality assessment using the Singular Value Decomposition theorem. Optical Review 16(2), 49–53 (2009)CrossRefGoogle Scholar
  10. 10.
    Okarma, K.: Two-dimensional windowing in the structural similarity index for the colour image quality assessment. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 501–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Okarma, K.: Combined full-reference image quality metric linearly correlated with subjective assessment. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010. LNCS (LNAI), vol. 6113, pp. 539–546. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Okarma, K.: Video quality assessment using the combined full-reference approach. In: Choraś, R.S. (ed.) Image Processing and Communications Challenges 2. AISC, vol. 84, pp. 51–58. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. 13.
    Parvez Sazzad, Z., Kawayoke, Y., Horita, Y.: Image quality evaluation database (2000),
  14. 14.
    Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008 - a database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics 10, 30–45 (2009)Google Scholar
  15. 15.
    Sendashonga, M., Labeau, F.: Low complexity image quality assessment using frequency domain transforms. In: Proc. IEEE Int. Conf. Image Proc., pp. 385–388 (2006)Google Scholar
  16. 16.
    Sheikh, H., Wang, Z., Cormack, L., Bovik, A.: LIVE image quality assessment database release 2 (2005),
  17. 17.
    Sheikh, H., Bovik, A., de Veciana, G.: An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Trans. Image Proc. 14(12), 2117–2128 (2005)CrossRefGoogle Scholar
  18. 18.
    Sheikh, H., Bovik, A.: Image information and visual quality. IEEE Trans. Image Proc. 15(2), 430–444 (2006)CrossRefGoogle Scholar
  19. 19.
    Shnayderman, A., Gusev, A., Eskicioglu, A.: A multidimensional image quality measure using Singular Value Decomposition. In: Proc. SPIE Image Quality and Image Quality and System Performance, vol. 5294(1), pp. 82–92 (2003)Google Scholar
  20. 20.
    Shnayderman, A., Gusev, A., Eskicioglu, A.: An SVD-based gray-scale image quality measure for local and global assessment. IEEE Trans. Image Proc. 15(2), 422–429 (2006)CrossRefGoogle Scholar
  21. 21.
    VQEG. Final report on the validation of objective models of video quality assessment (2003),
  22. 22.
    Wang, Z., Bovik, A.: A universal image quality index. IEEE Signal Proc. Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  23. 23.
    Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: From error measurement to Structural Similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)CrossRefGoogle Scholar
  24. 24.
    Wang, Z., Simoncelli, E., Bovik, A.: Multi-Scale Structural Similarity for image quality assessment. In: Proc. 37th IEEE Asilomar Conf. on Signals, Systems and Computers (2003)Google Scholar
  25. 25.
    Winkler, S.: Digital video quality - vision models and metrics. Wiley, Chichester (2005)Google Scholar
  26. 26.
    Yang, C.-L., Wang, H.-x., Po, L.-M.: A Novel Fast Motion Estimation Algorithm Based on SSIM for H.264 Video Coding. In: Ip, H.H.-S., Au, O.C., Leung, H., Sun, M.-T., Ma, W.-Y., Hu, S.-M. (eds.) PCM 2007. LNCS, vol. 4810, pp. 168–176. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  27. 27.
    Yang, C.-l., Leung, R.-K., Po, L.-M., Mai, Z.-Y.: An SSIM-optimal H.264/AVC inter frame encoder. In: Proc. IEEE Int. Conf. Intel. Comp. and Intel. Syst., pp. 291–295 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Krzysztof Okarma
    • 1
  1. 1.Szczecin Faculty of Electrical Engineering Department of Signal Processing and Multimedia EngineeringWest Pomeranian University of TechnologySzczecinPoland

Personalised recommendations