Skip to main content

Cremona special sets of points in products of projective spaces

  • Conference paper
  • First Online:
Complex and Differential Geometry

Part of the book series: Springer Proceedings in Mathematics ((PROM,volume 8))

Abstract

A set of points in the projective plane is said to be Cremona special if its orbit with respect to the Cremona group of birational transformations consists of finitely many orbits of the projective group. This notion was extended by A. Coble to sets of points in higher–dimensional projective spaces and by S. Mukai to sets of points in the product of projective spaces. No classification of such sets is known in these cases. In the present article we survey Coble’s examples of Cremona special points in projective spaces and initiate a search for new examples in the case of products of projective spaces. We also extend to the new setting the classical notion of associated points sets.

Mathematics Subject Classification (2010) Primary 14E07. Secondary 14N05, 11H55.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Coble, The ten nodes of the rational sextic and of the Cayley symmetroid, Amer. J. Math. 41 (1919), 243–265.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Coble, Point sets and allied Cremona groups. II. Trans. Amer. Math. Soc. 17 (1916), 345–385.

    MathSciNet  Google Scholar 

  3. A. Coble, Associated sets of points. Trans. Amer. Math. Soc. 24 (1922), 1–20.

    Article  MathSciNet  Google Scholar 

  4. A. Coble, Algebraic geometry and theta functions (reprint of the 1929 edition), A. M. S. Coll. Publ., v. 10. A. M. S., Providence, R.I., 1982.

    Google Scholar 

  5. A. Coble, A Generalization of the Weddle Surface, of Its Cremona Group, and of Its Parametric Expression in Terms of Hyperelliptic Theta Functions. Amer. J. Math. 52 (1930), 439–500.

    Article  MATH  MathSciNet  Google Scholar 

  6. F. Cossec, Reye congruences. Trans. Amer. Math. Soc. 280 (1983), 737–751.

    Article  MathSciNet  Google Scholar 

  7. F. Cossec, I. Dolgachev, On automorphisms of nodal Enriques surfaces. Bull. Amer. Math. Soc. (N.S.) 12 (1985), 247–249.

    Article  MathSciNet  Google Scholar 

  8. F. Cossec, I. Dolgachev, On automorphisms of nodal Enriques surfaces, unpublished manuscript.

    Google Scholar 

  9. I. Dolgachev, D. Ortland, Point sets in projective spaces and theta functions. Astérisque, 165 (1988).

    Google Scholar 

  10. I. Dolgachev, M. Kapranov, Arrangements of hyperplanes and vector bundles on P n. Duke Math. J., 71 (1993), 633–664.

    Article  MathSciNet  Google Scholar 

  11. I. Dolgachev, On certain families of elliptic curves in projective space. Ann. Mat. Pura Appl. (4) 183 (2004), no. 3, 317–331.

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Du Val, On the Kantor group of a set of points in a plane, Proc. London Math. Soc. 42 (1936), 18–51.

    Google Scholar 

  13. P. Du Val, Crystallography and Cremona transformations. "The Geometric Vein", pp. 191–201, Springer, New York-Berlin, 1981.

    Google Scholar 

  14. D. Eisenbud, S. Popescu, The projective geometry of the Gale transform. J. Algebra 230 (2000), no. 1, 127–173.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Gizatullin, Rational G-surfaces. Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), 110–144.

    MathSciNet  Google Scholar 

  16. H. Hudson, Cremona transformations in plane and space, Cambridge Univ. Press. 1927.

    Google Scholar 

  17. V. Kac, Infinite-dimensional Lie algebras. Third edition. Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  18. S. Kantor, Theorie der endlichen Gruppen von eindeutigen Transformationen in der Ebene, Berlin. Mayer & Müller. 1895.

    Google Scholar 

  19. S. Kantor, Theorie der Transformationen im R 3 welche keine fundamental Curven 1. Art be-sitzen, Acta Math. 21 (1897), 1–78.

    Article  MATH  MathSciNet  Google Scholar 

  20. Y.Kawamata, Flops connect minimal models, Publ. RIMS Kyoto Univ., 44 (2008), 419–423.

    Article  MathSciNet  Google Scholar 

  21. S. Mukai, Geometric realization of T-shaped root systems and counterexamples to Hilbert’s fourteenth problem, in "Algebraic transformation groups and algebraic varieties", 123–129, Encyclopaedia Math. Sci., 132, Springer, Berlin, 2004.

    Google Scholar 

  22. M. Nagata, On rational surfaces. II. Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33 (1960/1961), 271–293.

    Google Scholar 

  23. J.-P. Serre, Morphismes universels et variétés d’Albanese, Exposés de séminaires, 1950–1989, Soc. Math. France, 2001, 141–160.

    Google Scholar 

  24. B. Totaro, Hilbert’s 14th problem over finite fields and a conjecture on the cone of curves. Compos. Math. 144 (2008), 1176–1198.

    Article  MATH  MathSciNet  Google Scholar 

  25. O. Wittenberg, On Albanese torsors and the elementary obstruction. Math. Ann. 340 (2008), 805–838.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor V. Dolgachev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dolgachev, I.V. (2011). Cremona special sets of points in products of projective spaces. In: Ebeling, W., Hulek, K., Smoczyk, K. (eds) Complex and Differential Geometry. Springer Proceedings in Mathematics, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20300-8_7

Download citation

Publish with us

Policies and ethics