Advertisement

Attractive and Repulsive Casimir–Lifshitz Forces, QED Torques, and Applications to Nanomachines

  • Federico Capasso
  • Jeremy N. Munday
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 834)

Abstract

This chapter discusses recent developments in quantum electrodynamical (QED) phenomena, such as the Casimir effect, and their use in nanomechanics and nanotechnology in general. Casimir–Lifshitz forces arise from quantum fluctuations of vacuum or more generally from the zero-point energy of materials and their dependence on the boundary conditions of the electromagnetic fields. Because the latter can be tailored, this raises the interesting possibility of designing QED forces for specific applications. After a concise review of the field in the introduction, high precision measurements of the Casimir force using MicroElectroMechanical Systems (MEMS) are discussed. Applications to nonlinear oscillators are presented, along with a discussion of their use as nanoscale position sensors. Experiments that have demonstrated the role of the skin-depth effect in reducing the Casimir force are then presented. The dielectric response of materials enters in a non-intuitive way in the modification of the Casimir–Lifshitz force between dielectrics through the dielectric function at imaginary frequencies ε(iξ). The latter is illustrated in a dramatic way by experiments on materials that can be switched between a reflective and a transparent state (hydrogen switchable mirrors) and by a large reduction of the Casmir force between a gold sphere and a thick gold film, when the latter is replaced by an indium tin oxide (ITO) thick film. Changing the electromagnetic density of states by altering the shape of the interacting surfaces on a scale comparable to their separation is an effective method to tailor Casimir–Lifshitz forces. Measurements of the latter between a silicon surfaces nanostructured with deep trenches and a sphere metalized with thick gold have demonstrated the non-additivity of these forces and the ability to tailor them by suitable surface patterning. Experiments on the Casimir effect in fluids are discussed, including measurements of attractive and repulsive Casimir forces conducted between solids separated by a fluid with ε(iξ) intermediate between those of the solids over a large frequency range. Such repulsive forces can be used to achieve quantum levitation in a virtually friction-less environment, a phenomenon that could be exploited in innovative applications to nanomechanics. The last part of the chapter deals with the elusive QED torque between birefringent materials and efforts to observe it. We conclude by highlighting future important directions.

Keywords

Dielectric Function Casimir Force Casimir Energy Gold Sphere Casimir Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank D. Iannuzzi, M Lisanti, L Spector, M B Romanowsky, N Geisse, K Parker, R M Osgood, R Roth, H Stone, Y Barash, V A Aksyuk, R N Kleinman, D J Bishop for their collaborations and R Guerra, R Onofrio, M Kardar, R L Jaffe, S G Johnson, J D Joannopoulos, L Levitov, V Parsegian, J. N. Israelachvili, E Tosatti, V. Pogrovski, M Scully, P W Milonni, W. Kohn, M. Cohen, A Lambrecht, F. Intravaia, S. Reynaud for helpful suggestions and discussions.

References

  1. 1.
    Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, San Diego (1993)Google Scholar
  2. 2.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. K. Ned. Akad. Wet. 60, 793–795 (1948)Google Scholar
  3. 3.
    Casimir, H.B.G.: Haphazard Reality. Half a Century of Science. Harper and Row, New York (1983)Google Scholar
  4. 4.
    Jaffe, R.L., Scardicchio, A.: Casimir effect and geometric optics. Phys. Rev. Lett. 92, 070402 (2004)ADSGoogle Scholar
  5. 5.
    Scardicchio, A., Jaffe, R.L.: Casimir effects: an optical approach I. Foundations and examples. Nuc. Phys. B 704, 552–582 (2005)MathSciNetADSzbMATHGoogle Scholar
  6. 6.
    Sparnaay, M.J.: Measurements of attractive forces between flat plates. Physica 24, 751–764 (1958)ADSGoogle Scholar
  7. 7.
    van Blokland, P.H.G.M., Overbeek, J.T.G.: van der Waals forces between objects covered with a chromium layer. J. Chem. Soc. Faraday Trans. 74, 2637–2651 (1978)Google Scholar
  8. 8.
    Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 μm range. Phys. Rev. Lett. 78, 5–8 (1997)ADSGoogle Scholar
  9. 9.
    Mohideen, U., Roy, A.: Precision Measurement of the Casimir force from 0.1 to 0.9 μm. Phys. Rev. Lett. 81, 4549–4552 (1998)ADSGoogle Scholar
  10. 10.
    Roy, A., Lin, C.-Y., Mohideen, U.: Improved Precision Measurement of the Casimir force. Phys. Rev. D 60, 111101 (1999)ADSGoogle Scholar
  11. 11.
    Harris, B.W., Chen, F., Mohideen, U.: Precision Measurement of the Casimir force using gold surfaces. Phys.Rev. A 62, 052109 (2000)ADSGoogle Scholar
  12. 12.
    Ederth, T.: Template-stripped gold surfaces with 0.4-nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100 nm range. Phys. Rev. A 62, 062104 (2000)ADSGoogle Scholar
  13. 13.
    Bressi, G., Carugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett. 88, 041804 (2002)ADSGoogle Scholar
  14. 14.
    Decca, R.S., Lopez, D., Fischbach, E., Krause, D.E.: Measurement of the Casimir Force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003)ADSGoogle Scholar
  15. 15.
    Decca, R.S., Lopez, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Ann. Phys. 318, 37–80 (2005)ADSzbMATHGoogle Scholar
  16. 16.
    Chan, H.B., Aksyuk, V.A., Kleinman, R.N., Bishop, D.J., Capasso, F.: Quantum mechanical actuation of microelectromechanical systems by the Casimir force. Sci. 291, 1941–1944 (2001)ADSGoogle Scholar
  17. 17.
    Derjaguin, B.V., Abrikosova, I.I.: Direct measurement of the molecular attraction of solid bodies. Statement of the problem and measurement of the force by using negative feedback. Sov Phys. JETP 3, 819–829 (1957)Google Scholar
  18. 18.
    Milonni, Peter.W., Shih, Mei.-Li.: Casimir Forces. Contemp. Phys. 33, 313–322 (1992)ADSGoogle Scholar
  19. 19.
    Spruch, L.: Long-range (Casimir) interactions. Sci. 272, 1452–1455 (1996)ADSGoogle Scholar
  20. 20.
    Parsegian, V.A.: Van der Waals forces: a Handbook for Biologists. Chemists, Engineers, and Physicists, Cambridge University Press, New York (2006)Google Scholar
  21. 21.
    Mostepanenko, V.M., Trunov, N.N.: The Casimir effect and its applications. Oxford University Press, Clarendon NY (1997)Google Scholar
  22. 22.
    Milton, K.A.: The Casimir effect: Physical manifestations of zero-point energy. World Scientific, singapore (2001)zbMATHGoogle Scholar
  23. 23.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the casimir effect. Phys. Rep. 353, 1–205 (2001)MathSciNetADSzbMATHGoogle Scholar
  24. 24.
    Martin, P.A., Buenzli, P.R.: The Casimir effect. Acta Phys. Polon. B 37, 2503–2559 (2006)ADSGoogle Scholar
  25. 25.
    Lambrecht, A.: The Casimir effect: a force from nothing. Physics World 15, 29–32 (2002). (Sept. 2002)Google Scholar
  26. 26.
    Lamoreaux, S.K.: Resource Letter CF-1: Casimir Force. Am. J. Phys. 67, 850–861 (1999)ADSGoogle Scholar
  27. 27.
    For an extensive bibliography on the Casimir effect see: http://www.cfa.harvard.edu/~babb/casimir-bib.html.
  28. 28.
    Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov Phys. JETP 2, 73–83 (1956)MathSciNetGoogle Scholar
  29. 29.
    Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Adv. Phys. 10, 165–209 (1961)MathSciNetADSGoogle Scholar
  30. 30.
    Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Eur Phys. J. D 8, 309–318 (2000)ADSGoogle Scholar
  31. 31.
    Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Casimir and van der Waals forces between two plates or a sphere (lens) above a plate made of real metals. Phys. Rev. A 61, 062107 (2000)ADSGoogle Scholar
  32. 32.
    Palik, E.D. (ed.): Handbook of Optical Constants of Solids. Academic, New York (1998)Google Scholar
  33. 33.
    Palik, E.D. (ed.): Handbook of Optical Constants of Solids: II. Academic, New York (1991)Google Scholar
  34. 34.
    Ordal, M.A., Bell, R.J., Alexander Jr., R.W., Long, L.L., Querry, M.R.: Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. Appl. Opt. 24, 4493–4499 (1985)ADSGoogle Scholar
  35. 35.
    Maradudin, A.A., Mazur, P.: Effects of surface roughness on the van der Waals force between macroscopic bodies. Phys. Rev. B 22, 1677–1686 (1980)MathSciNetADSGoogle Scholar
  36. 36.
    Neto, P.A.M., Lambrecht, A., Reynaud, S.: Roughness correction to the Casimir force: Beyond the proximity force approximation. Europhys. Lett. 69, 924–930 (2005)ADSGoogle Scholar
  37. 37.
    Mahanty, J., Ninham, B.W.: Dispersion Forces. Academic, London (1976)Google Scholar
  38. 38.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic, London (1991)Google Scholar
  39. 39.
    Henkel, C., Joulain, K., Mulet, J.Ph., Greffet, J.-J.: Coupled surface polaritons and the Casimir force. Phys. Rev. A 69, 023808 (2004)ADSGoogle Scholar
  40. 40.
    Intravaia, F., Lambrecht, A.: Surface plasmon modes and the Casimir energy. Phys. Rev. Lett. 94, 110404 (2005)ADSGoogle Scholar
  41. 41.
    Intravaia, F.: Effet Casimir et interaction entre plasmons de surface, PhD Thesis, Université Paris, (2005)Google Scholar
  42. 42.
    Lamoreaux, S.K.: Comment on Precision Measurement of the Casimir Force from 0.1 to 0.9 μm. Phys. Rev. Lett. 83, 3340 (1999)ADSGoogle Scholar
  43. 43.
    Lamoreaux, S.K.: Calculation of the Casimir force between imperfectly conducting plates. Phys. Rev. A 59, 3149–3153 (1999)ADSGoogle Scholar
  44. 44.
    Iannuzzi, D., Gelfand, I., Lisanti, M., Capasso, F.: New Challenges and directions in Casimir force experiments. Proceedings of the Sixth Workshop on Quantum Field Theory Under the Influence of External Conditions, pp. 11-16. Rinton, Paramus, NJ (2004)Google Scholar
  45. 45.
    Pirozhenko, I., Lambrecht, A., Svetovoy, V.B.: Sample dependence of the Casimir force. New J. Phys. 8, 238 (2006)ADSGoogle Scholar
  46. 46.
    Buks, E., Roukes, M.L.: Metastability and the Casimir effect in micromechanical systems. Europhys. Lett. 54(2), 220–226 (2001)ADSGoogle Scholar
  47. 47.
    Chan, H.B., Aksyuk, V.A., Kleinman, R.N., Bishop, D.J., Capasso, F.: Nonlinear micromechanical Casimir oscillator. Phys. Rev. Lett. 87, 211801 (2001)ADSGoogle Scholar
  48. 48.
    Iannuzzi, D., Lisanti, M., Munday, J.N., Capasso, F.: The design of long range quantum electrodynamical forces and torques between macroscopic bodies. Solid State Commun. 135, 618–626 (2005)ADSGoogle Scholar
  49. 49.
    de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)Google Scholar
  50. 50.
    Lisanti, M., Iannuzzi, D., Capasso, F.: Observation of the skin-depth effect on the Casimir force between metallic surfaces. Proc. Natl. Acad. Sci. USA 102, 11989–11992 (2005)ADSGoogle Scholar
  51. 51.
    Golestanian, R., Kardar, M.: ‘‘Mechanical response of vacuum. Phys. Rev. Lett. 78, 3421–3425 (1997)ADSGoogle Scholar
  52. 52.
    Emig, T., Hanke, A., Kardar, M.: Probing the strong boundary shape dependence of the Casimir force. Phys. Rev. Lett. 87, 260402 (2001)ADSGoogle Scholar
  53. 53.
    Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401 (2008)ADSGoogle Scholar
  54. 54.
    Parsegian, V.A., Weiss, G.H.: Dielectric anisotropy and the van der Waals interaction between bulk media. J. Adhes. 3, 259–267 (1972)Google Scholar
  55. 55.
    Barash, Y.: On the moment of van der Waals forces between anisotropic bodies. Izv. Vyssh. Uchebn. Zaved. Radiofiz. 12, 1637–1643 (1978)Google Scholar
  56. 56.
    Senturia, S.D.: Microsystem Design. Kluwer Academic, Dordrecht (2001)Google Scholar
  57. 57.
    Bishop, D.J., Giles, C.R., Austin, G.P.: The Lucent LambdaRouter MEMS: Technology of the future here today. IEEE Comun. Mag. 40, 75–79 (2002)Google Scholar
  58. 58.
    Aksyuk, V.A., Pardo, F., Carr, D., Greywall, D., Chan, H.B., Simon, M.E., Gasparyan, A., Shea, H., Lifton, V., Bolle, C., Arney, S., Frahm, R., Paczkowski, M., Haueis, M., Ryf, R., Neilson, D.T., Kim, J., Giles, C.R., Bishop, D.: Beam-steering micromirrors for large optical cross-connects. J. Lightw. Technol. 21, 634–642 (2003)ADSGoogle Scholar
  59. 59.
    Serry, M., Walliser, D., Maclay, J.: The role of the Casimir effect in the static deflection and stiction of membrane strips in microelectromechanical systems (MEMS). J. Appl. Phys. 84, 2501–2506 (1998)ADSGoogle Scholar
  60. 60.
    De Los Santos, H.J.: Nanoelectromechanical quantum circuits and systems. Proc. IEEE 91, 1907–1921 (2003)Google Scholar
  61. 61.
    Serry, F.M., Walliser, D., Maclay, G.J.: The anharmonic Casimir oscillator (ACO)-the Casimir effect in a model microelectromechanical system. J. Microelectromech. Syst. 4, 193–205 (1995)Google Scholar
  62. 62.
    Landau, L.D., Lifshitz, E.M.: Mechanics. Pergamon, New York (1976)Google Scholar
  63. 63.
    Büscher, R., Emig, T.: Nonperturbative approach to Casimir interactions in periodic geometries. Phys. Rev. A 69, 062101 (2004)ADSGoogle Scholar
  64. 64.
    Klimchitskaya, G.L., Zanette, S.I., Caride, A.O.: Lateral projection as a possible explanation of the nontrivial boundary dependence of the Casimir force. Phys. Rev. A 63, 014101 (2000)ADSGoogle Scholar
  65. 65.
    Chen, F., Klimchitskaya, G.L., Mostepanenko, V.M., Mohideen, U.: Demonstration of the difference in the Casimir force for samples with different charge-carrier densities. Phys. Rev. Lett. 97, 170402 (2006)ADSGoogle Scholar
  66. 66.
    Iannuzzi, D., Lisanti, M., Capasso, F.: Effect of hydrogen-switchable mirrors on the Casimir force. Proc. Natl. Acad. Sci. USA 101, 4019–4023 (2004)ADSGoogle Scholar
  67. 67.
    Chu, W.K., Mayer, J.W., Nicolet, M.-A.: Backscattering Spectrometry. Academic Press, New York (1978)Google Scholar
  68. 68.
    Iannuzzi, D., Lisanti, M., Munday, J.N., Capasso, F.: Quantum fluctuations in the presence of thin metallic films and anisotropic materials. J. Phys. A: Math. Gen. 39, 6445–6454 (2006)MathSciNetADSGoogle Scholar
  69. 69.
    Hough, D.B., White, L.R.: The Calcualtion of Hamaker constants from Lifshitz theory with applications to wetting phenomena. Adv. Colloid Interface Sci. 14, 3–41 (1980)Google Scholar
  70. 70.
    Huiberts, J.N., Griessen, R., Rector, J.H., Wijngaarden, R.J., Dekker, J.P., de Groot, D.G., Koeman, N.J.: Yttrium and lanthanum hydride films with switchable optical properties. Nat. 380, 231–234 (1996)ADSGoogle Scholar
  71. 71.
    Richardson, T.J., Slack, J.L., Armitage, R.D., Kostecki, R., Farangis, B., Rubin, M.D.: Switchable mirrors based on nickel–magnesium films. Appl. Phys. Lett. 78, 3047–3049 (2001)ADSGoogle Scholar
  72. 72.
    de Man, S., Iannuzzi, D.: On the use of hydrogen switchable mirrors in Casimir force experiments. New J. Phys. 8, 235 (2006)Google Scholar
  73. 73.
    de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)Google Scholar
  74. 74.
    Munday, J.N., Capasso, F.: Precision Measurement of the Casimir–Lifshitz force in a fluid. Phys. Rev. A 75, 060102 (2007)ADSGoogle Scholar
  75. 75.
    Munday, J.N., Capasso, F., Parsegian, V.A., Bezrukov, S.M.: Measurements of the Casimir–Lifshitz force in fluids: The effect of electrostatic forces and Debye the Casimir–Lifshitz force in fluids: The effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008)ADSGoogle Scholar
  76. 76.
    Munday, J.N., Parsegian, V.A., Capasso, F.: Measured long-range repulsive Casimir–Lifshitz forces. Nat. 457, 170–173 (2009)ADSGoogle Scholar
  77. 77.
    Boyer, T.H.: ‘Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 1764–1776 (1968)ADSGoogle Scholar
  78. 78.
    Ambjorn, J., Wolfram, S.: Properties of the vacuum. I. mechanical and thermodynamic. Ann. Phys. 147, 1–32 (1983)ADSGoogle Scholar
  79. 79.
    Maclay, G.J.: Analysis of zero-point electromagnetic energy and Casimir forces in conducting rectangular cavities. Phys. Rev. A 61, 052110 (2000)ADSGoogle Scholar
  80. 80.
    Graham, N., Jaffe, R.L., Khemani, V., Quandt, M., Schroeder, O., Weigel, H.: The Dirichlet Casimir Problem. Nucl.Phys B 677, 379–404 (2004)ADSzbMATHGoogle Scholar
  81. 81.
    Hertzberg, M.P., Jaffe, R.L., Kardar, M., Scardicchio, A.: Attractive Casimir forces in a closed geometry. Phys. Rev. Lett. 95, 250402 (2005)MathSciNetADSGoogle Scholar
  82. 82.
    Tartaglino, U., Zykova-Timan, T., Ercolessi, F., Tosatti, E.: Melting and nonmelting of solid surfaces and nanosystems. Phys. Repts. 411, 291–321 (2005)ADSGoogle Scholar
  83. 83.
    Sabisky, E.S., Anderson, C.H.: Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films. Phys. Rev. A 7, 790–806 (1973)ADSGoogle Scholar
  84. 84.
    Munday, J.N., Federico, C.: Repulsive Casimir and van der Waals forces: From measurements to future technologies. Inter. Journ. Mod. Phys. A 25, 2252–2259 (2010)ADSGoogle Scholar
  85. 85.
    Hutter, J.L., Bechhoefer, J.: Manipulation of van der Waals forces to improve image resolution in atomic-force microscopy. J. Appl. Phys. 73, 4123 (1993)ADSGoogle Scholar
  86. 86.
    Milling, A., Mulvaney, P., Larson, I.: Direct measurement of repulsive van der Waals interactions using an atomic force microscope. J. Col. Inter. Sci. 180, 460 (1996)Google Scholar
  87. 87.
    Meurk, A., Luckham, P.F., Bergstrom, L.: Direct measurement of repulsive and attractive van der Waals forces between inorganic materials. Langmuir 13, 3896 (1997)Google Scholar
  88. 88.
    Lee, S., Sigmund, W.M.: Repulsive van der Waals forces for silica and alumina. J. Col. Inter. Sci. 243, 365 (2001)Google Scholar
  89. 89.
    Lee, S.W., Sigmund, W.M.: AFM study of repulsive van der Waals forces between teflon AF thin film and silica or alumina. Col. Surf. A 204, 43 (2002)Google Scholar
  90. 90.
    Feiler, A., Plunkett, M.A., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir 24, 2274 (2008)Google Scholar
  91. 91.
    Sader, J.E., et al.: Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instr 66, 3789 (1995)ADSGoogle Scholar
  92. 92.
    Cleveland, J.P., et al.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instr. 64, 403 (1993)ADSGoogle Scholar
  93. 93.
    Gibson, C.T., Watson, G.S., Myhra, S.: Scanning force microscopy—calibrative procedures for best practice. Scanning 19, 564 (1997)Google Scholar
  94. 94.
    Craig, V.S.J., Neto, C.: In Situ calibration of colloid probe cantilevers in force microscopy: hydrodynamic drag on a sphere approaching a wall. Langmuir 17, 6018 (2001)Google Scholar
  95. 95.
    Iannuzzi, D., Munday, J., Capasso, F.: Ultra-low static friction configuration. Patent submitted, (2005)Google Scholar
  96. 96.
    Ducker, W.A., Senden, T.J., Pashley, R.M.: Direct force measurements of colloidal forces using an atomic force microscope. Nat. 353, 239–241 (1991)ADSGoogle Scholar
  97. 97.
    van Enk, S.J.: Casimir torque between dielectrics. Phys. Rev. A 52, 2569–2575 (1995)ADSGoogle Scholar
  98. 98.
    Kenneth, O., Nussinov, S.: New polarized version of the Casimir effect is measurable. Phys. Rev. D 63, 121701 (2001)ADSGoogle Scholar
  99. 99.
    Shao, S.C.G., Tong, A.H., Luo, J.: Casimir torque between two birefringent plates. Phys. Rev. A 72, 022102 (2005)ADSGoogle Scholar
  100. 100.
    Torres-Guzmán, J.C., Mochán, W.L.: Casimir torque. J. Phys. A: Math. Gen. 39, 6791–6798 (2006)ADSGoogle Scholar
  101. 101.
    Rodrigues, R.B., Neto, P.A.M., Lambrecht, A., Reynaud, S.: Vacuum-induced torque between corrugated metallic plates. Europhys. Lett. 76, 822 (2006)ADSGoogle Scholar
  102. 102.
    Munday, J.N., Iannuzzi, D., Barash, Y., Capasso, F.: Torque on birefringent plates induced by quantum fluctuations. Phys. Rev. A 71, 042102 (2005)ADSGoogle Scholar
  103. 103.
    Munday, J.N., Iannuzzi, D., Capasso, F.: Quantum electrodynamical torques in the presence of brownian motion. New J. Phys. 8, 244 (2006)ADSGoogle Scholar
  104. 104.
    Prieve, D.C., Frej, N.A.: Total internal reflection microscopy: a quantitative tool for the measurement of colloidal forces. Langmuir 6, 396–403 (1990)Google Scholar
  105. 105.
    Prieve, D.C.: Measurement of colloidal forces with TIRM. Adv. Colloid Interface Sci. 82, 93–125 (1999)Google Scholar
  106. 106.
    Crocker, J.C., Grier, D.G.: Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996)Google Scholar
  107. 107.
    Jones, R.C.: New calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. A. 31, 488–493 (1941)Google Scholar
  108. 108.
    Fowles, G.R.: Introduction to Modern Optics. Dover Publishing, New York (1968)Google Scholar
  109. 109.
    Levy, M., Osgood, R.M., Liu, R., Cross, L.E., Cargill III, G.S., Kumar, A., Bakhru, H.: Fabrication of single-crystal lithium niobate films by crystal ion slicing. Appl. Phys. Lett. 73, 2293–2295 (1998)ADSGoogle Scholar
  110. 110.
    Bimonte, G., Calloni, E., Esposito, G., Rosa, L.: Casimir energy and the superconducting phase transition. J. Phys. A: Math. Gen. 39, 6161–6171 (2006)MathSciNetADSzbMATHGoogle Scholar
  111. 111.
    Torricelli, G., van Zwol, P.J., Shpak, O., Binns, C., Palasantzas, G., Kooi, B.J., Svetovoy, V.B., Wuttig, M.: Switching Casimir forces with phase change materials. Phys. Rev. A 82, 010101(R) (2010)ADSGoogle Scholar
  112. 112.
    Soyka, F., et al.: Critical Casimir forces in colloidal suspensions on chemically patterned surfaces. Phys. Rev. Lett. 101, 208301 (2008)ADSGoogle Scholar
  113. 113.
    Sheehan, D.P.: Casimir chemistry. The J. Chem. Phys. 131, 104706 (2009)ADSGoogle Scholar
  114. 114.
    Cho, Y.K., et al.: Self-assembling colloidal-scale devices: selecting and using shortrange surface forces between conductive solids. Adv. Mater. 17, 379 (2007)Google Scholar
  115. 115.
    Bishop, K.J.M., et al.: Nanoscale forces and their uses in self-assembly. Small 5, 1600 (2009)Google Scholar
  116. 116.
    Levitov, L.S.: Van Der Waals’ friction. Europhys. Lett. 8, 499–504 (1989)ADSGoogle Scholar
  117. 117.
    Levitov L.S.: private communicationGoogle Scholar
  118. 118.
    Pendry, J.B.: Shearing the vacuum-quantum friction. J. Phys.: Condens. Matter 9, 10301–10320 (1997)ADSGoogle Scholar
  119. 119.
    Kardar, M., Golestanian, R.: The friction of vacuum, and other fluctuation-induced forces. Rev Mod. Phys. 71, 1233–1245 (1999)ADSGoogle Scholar
  120. 120.
    Lambrecht, A., Jaekel, M., Reynaud, S.: Motion induced radiation from a vibrating cavity. Phys. Rev. Lett. 77, 615–618 (1996)ADSGoogle Scholar
  121. 121.
    Schwinger, J.: Casimir light: A glimpse. Proc. Natl. Acad. Sci. USA 90, 958–959 (1993)MathSciNetADSGoogle Scholar
  122. 122.
    Huang, X.M.H., Feng, X.L., Zorman, C.A., Mehregany, M., Roukes, M.L.: VHF, UHF and microwave frequency nanomechanical resonators. New J. Phys. 7, 247 (2005)ADSGoogle Scholar
  123. 123.
    Belyanin, A., Kocharovsky, V., Kocharovsky, V., Capasso, F.: Coherent radiation from neutral molecules moving above a grating. Phys. Rev. Lett. 88, 053602 (2002)ADSGoogle Scholar
  124. 124.
    Rodriguez, A.W., Capasso, F., Johnson, S.G.: Nat. Photonics 5 211 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Federico Capasso
    • 1
  • Jeremy N. Munday
    • 2
  1. 1.School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Department of Electrical and Computer Engineering University of MarylandCollege ParkUSA

Personalised recommendations