Progress in Experimental Measurements of the Surface–Surface Casimir Force: Electrostatic Calibrations and Limitations to Accuracy

  • Steve K. LamoreauxEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 834)


Several new experiments have extended studies of the Casimir force into new and interesting regimes. This recent work will be briefly reviewed. With this recent progress, new issues with background electrostatic effects have been uncovered. The myriad of problems associated with both patch potentials and electrostatic calibrations are discussed and the remaining open questions are brought forward.


Casimir Force Contact Potential Electrostatic Effect Perfect Conductor Finite Conductivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



I thank my colleagues and collaborators W.-J. Kim, A.O. Sushkov, H.X. Tang, and D.A.R. Dalvit for many fruitful discussions that led to the understanding of our Ge experiment, and to deeper understanding of the Casimir force in general. I also thank R. Onofrio and S. de Man for a number of discussions over the last few years that were helpful in clarifying a number of issues. SKL was supported by the DARPA/MTO Casimir Effect Enhancement project under SPAWAR contract number N66001-09-1-2071.


  1. 1.
    Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: Experiment and theory. Rev. Mod. Phys. 81, 1827 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    Lamoreaux, S.K.: Demonstration of the Casimir force in the 0.6 to 6 \(\upmu {\rm m}\) range. Phys. Rev. Lett. 78, 5 (1997)ADSCrossRefGoogle Scholar
  3. 3.
    Hargreaves, C.M.: Corrections to the retarded dispersion force between metal bodies. Proc Kon. Ned. Akad. Wetensh. 68B, 231 (1965)Google Scholar
  4. 4.
    Schwinger, J., De Raad Jr., L.L., Milton, K.A: Casimir effect in dielectrics. Ann. Phys. (New York) 115, 1 (1978)ADSCrossRefGoogle Scholar
  5. 5.
    Lamoreaux, S.K.: Calculation of the Casimir force between imperfectly conducting plates. Phys. Rev. A 59, R3149 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Lamoreaux, S.K.: Erratum: Demonstration of the Casimir force in the 0.6 to 6 \(\upmu {\rm m}\) range. Phys. Rev. Lett. 81, 5475 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Euro. Phys. J. D 8, 309 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    Lambrecht, A., Reynaud, S., Lamoreaux, S.K.: Comment on Demonstration of the Casimir force in the 0.6 to 6 \(\upmu {\rm m}\) range. Phys. Rev. Lett. 84, 5672 (2000), and references thereinGoogle Scholar
  9. 9.
    Boström, M., Sernelius, B.: Thermal effects on the Casimir force in the 0.1–5 \(\upmu {\rm m}\) range. Phys Rev Lett 84, 4757 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    Boström, M., Sernelius, B.E: Entropy of the Casimir effect between real metal plates. Physica A 339, 53 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    Lamoreaux, S.K., Buttler, W.T.: Thermal noise limitations to force measurements with torsion pendulums: Applications to the measurement of the Casimir force and its thermal correction. Phys. Rev. E 71, 036109 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Milonni, P.W.: The Quantum Vacuum. Academic Press, San Diego (1994)Google Scholar
  13. 13.
    Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetenschap 51, 793 (1948)Google Scholar
  14. 14.
    Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)MathSciNetGoogle Scholar
  15. 15.
    See, e.g., Mostepanenko, V.: Theory, and the Casimir effect. J. Phys. Conf. Ser. 161, 012003 (2009)Google Scholar
  16. 16.
    Jackson, J.D.: Classical Electrodynamics, 2nd ed. Wiley, New York (1975). See Sect. 7.5Google Scholar
  17. 17.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continuous Media. Pergamon, Oxford (1960)zbMATHGoogle Scholar
  18. 18.
    Svetovoy, V.B., van Zwol, P.J., Palasantzas, G., Th.M.De Hosson, J.: Optical properties of gold films and the Casimir force. Phys.Rev. B 77, 035439 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    van Zwol, P.J., Svetovoy, V.B., Palasantzas, G.: Distance upon contact: Determination from roughness profile. Phys. Rev. B 80, 235401 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    Fischbach, E., Sudarsky, D., Szafer, A., Talmadge, C., Aronson, S.H.: Reanalysis of the Eotvos experiment. Phys. Rev. Lett. 56, 3 (1986)ADSCrossRefGoogle Scholar
  21. 21.
    Mostepanenko, V.M., Yu. Sokolov, I.: Laboratory tests for the constituents of dark matter. Astronoische Nachrichten 311, 197 (1990)ADSCrossRefGoogle Scholar
  22. 22.
    Long, J.C., Chan, H.W., Price, J.C.: Experimental status of gravitational-strength forces in the sub-centimeter regime. Nucl. Phys. B 539, 23 (1999)ADSCrossRefGoogle Scholar
  23. 23.
    Klimchitskaya, G.L., Bezerrade Mello, E.R., Mostepanenko, V.M.: Constraints on the parameters of degree-type hypothetical forces following from the new Casimir force measurement. Phys. Lett. A 236, 280 (1997)ADSCrossRefGoogle Scholar
  24. 24.
    Decca, R.S., Lopez, D., Fischbach, E., Klimchitskaya, G.L., Kraus, D..E, Mostepanenko, V.M.: Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 77101 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Dalvit, D.A.R., Onofrio, R.: On the use of the proximity force approximation for deriving limits to short-range gravitational-like interactions from sphere-plane Casimir force experiments. Phys. Rev. D 80, 064025 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    Decca, R.S., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Lopez, D., Mostepanenko, D.V.M.: Comment on Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry. Phys. Rev. D 79, 124021 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    Decca, R.S., Lopez, D., Chan, H.B., Fischbach, E., Krause, D.E., Jamell, C.R.: Constraining new forces in the Casimir regime using the isoelectronic technique. Phys. Rev. Lett. 94, 240401 (2005)**ADSCrossRefGoogle Scholar
  28. 28.
    Rosa, F.S.S., Dalvit, D.A.R., Milonni, P.W.: Casimir interactions for anisotropic magnetodielectric metamaterials. Phys. Rev. A 78, 032117 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Buks, E., Roukes, M.L.: Metastability and the Casimir effect in micromechanical systems. Europhys. Lett. 54, 220 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the Casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)CrossRefGoogle Scholar
  31. 31.
    Boyer, T.H.: Quantum electromagnetic zero-point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 1764 (1968)ADSCrossRefGoogle Scholar
  32. 32.
    Iannuzzi, D., Lisanti, M., Capasso, F.: Effect of hydrogen-switchable mirrors on the Casimir force. PNAS 101, 4019 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    de Man, S., Iannuzzi, D.: On the use of hydrogen switchable mirrors in Casimir force experiments. New J. Phys. 8, 235 (2006)Google Scholar
  34. 34.
    Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 03040 (2008)CrossRefGoogle Scholar
  35. 35.
    Büscher, R., Emig, T.: Nonperturbative approach to Casimir interactions in periodic geometries. Phys. Rev. A 69, 062101 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    Munday, J.N., Capasso, F.: Precision measurement of the Casimir–Lifshitz force in a fluid. Phys. Rev. A 75, 060102 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    Munday, J.N., Capasso, J.N.F., Parsegian, V.A., Bezrukov, S.M.: Measurements of the Casimir–Lifshitz force in fluids: The effect of electrostatic forces and Debye screening. Phys. Rev. A 78, 032109 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Munday, J.N., Capasso, F., Parsegian, V.A.: Measured long-range repulsive Casimir–Lifshitz forces. Nature 457, 170 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    Derjaguin, B.V., Abrikosova, I.I.: Direct measurement of the molecular attraction of solid bodies. 1. Statement of the problem and method of measuring forces by using negative feedback. Sov. Phys. JETP 3, 819 (1957)Google Scholar
  40. 40.
    Blocki, J., Randrup, J., Swiatecki, W.J., Tsang, C.F.: Proximity forces. Annals Phys. 105, 427 (1977)ADSCrossRefGoogle Scholar
  41. 41.
    Blocki, J., Swiatecki, W.J.: Generalization of the proximity force theorem. Annals Phys. 132, 53 (1981)ADSCrossRefGoogle Scholar
  42. 42.
    Kim, W.J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Reply to ‘Comment on Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry’. Phys. Rev. A 79, 026102 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Kim, W.J., Brown-Hayes, M., Dalvit, D.A.R., Brownell, J.H., Onofrio, R.: Anomalies in electrostatic calibrations for the measurement of the Casimir force in a sphere-plane geometry. Phys. Rev. A 78, 020101 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Casimir effect with rough metallic mirrors. Phys. Rev. A 72, 012115 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    Kim, W.J., Sushkov, A.O., Dalvit, D.A.R., Lamoreaux, S.K.: Measurement of the short-range attractive force between Ge plates using a torsion balance. Phy. Rev. Lett. 103, 060401 (2009)ADSCrossRefGoogle Scholar
  46. 46.
    de Man, S., Heeck, K., Iannuzzi, D.: No anomalous scaling in electrostatic calibrations for Casimir force measurements. Phys. Rev. A 79, 024102 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    Spitsyn, A.I., Vanstan, V.M.: Potential gradient along semiconductor-surface projections in an external electric field. Radiophysics and Quantum Electronics 36, 752 (1993)ADSCrossRefGoogle Scholar
  48. 48.
    Bardeen, J.: Surface states and rectification at metal semi-conductor contact. Phys. Rev. 71, 717 (1947)ADSCrossRefGoogle Scholar
  49. 49.
    Dalvit, D.A.R, Lamoreaux, S.K.: Computation of Casimir forces for dielectrics or intrinsic semiconductors based on the Boltzmann transport equation. J. Phys.: Conference Series 161, 012009 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    Dalvit, D.A.R, Lamoreaux, S.K.: Contribution of drifting carriers to the Casimir–Lifshitz and Casimir–Polder interactions with semiconductor materials. Phys. Rev. Lett. 101, 163203 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    Lamoreaux, S.K.: Electrostatic background forces due to varying contact potentials in Casimir experiments. arXiv:0808.0885Google Scholar
  52. 52.
    Robertson, N.A.: Kelvin Probe Measurements of the Patch Effect Report LIGO-G070481-00-R (available at
  53. 53.
    Speake, C.C., Trenkel, C.: Forces between conducting surfaces due to spatial variations of surface potential. Phys. Rev. Lett. 90, 160403 (2003)ADSCrossRefGoogle Scholar
  54. 54.
    Stein, E., Weiss, G.: Introduction to Fourier Transforms on Euclidean Spaces. Princeton University Press, Princeton (1971)Google Scholar
  55. 55.
    Kim, W.J., Sushkov, A.O., Dalvit,, D.A.R., Lamoreaux,, S.K.: Measurement of the short-range attractive force between Ge plates using a torsion balance. Phy. Rev. Lett. 103, 060401 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    Kim, W.J., Sushkov, A.O, Dalvit, D.A.R, Lamoreaux, S.K.: Surface contact potential patches and Casimir force measurements. Phys. Rev. A 81, 022505 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    Nonnemacher , N., OBoyle , M.P., Wickramasinghe, H.K.: Kelvin Probe Microscopy. Appl. Phys. Lett. 58, 2921 (1991)ADSCrossRefGoogle Scholar
  58. 58.
    Jacobs, H.O., Leuchtmann, P., Homan, O.J., Stemmer, A.: Resolution and contrast in Kelvin probe force microscopy. J. Appl. Phys. 84, 1168 (1998)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations