Advertisement

Casimir Effect in the Scattering Approach: Correlations Between Material Properties, Temperature and Geometry

  • Astrid LambrechtEmail author
  • Antoine Canaguier-Durand
  • Romain Guérout
  • Serge Reynaud
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 834)

Abstract

We present calculations of the quantum and thermal Casimir interaction between real mirrors in electromagnetic fields using the scattering approach. We begin with a pedagogical introduction of this approach in simple cases where the scattering is specular. We then discuss the more general case of stationary arbitrarily shaped mirrors and present in particular applications to two geometries of interest for experiments, that is corrugated plates and the plane-sphere geometry. The results nicely illustrate the rich correlations existing between material properties, temperature and geometry in the Casimir effect.

Keywords

Dielectric Function Casimir Force Plasma Model Casimir Energy Drude Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank I. Cavero-Pelaez, D. Dalvit, G.L. Ingold, M.-T. Jaekel, J. Lussange, P.A. Maia Neto, R. Messina, P. Monteiro, I. Pirozenkho and V. Marachevsky for contributions and/or fruitful discussions, H. B. Chan for kindly providing the data of his experiment and the ESF Research Networking Programme CASIMIR (http://www.casimir-network.com) for providing excellent possibilities for discussions and exchange. Financial support from the French Contract ANR-06-Nano-062 and from Capes-Cofecub are gratefully acknowledged.

References

  1. 1.
    Casimir, H.B.G.: Proc. K. Ned. Akad. Wet. 51, 793 (1948)zbMATHGoogle Scholar
  2. 2.
    Milonni, P.W.: The Quantum Vacuum. Academic Press, London (1994)Google Scholar
  3. 3.
    Lamoreaux, S.K.: Resource letter CF-1: Casimir force. Am. J. Phys. 67, 850 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    Reynaud, S., Lambrecht, A., Genet, C., Jaekel, M.T.: Quantum vacuum fluctuations. C. R. Acad. Sci. Paris IV-2, 1287 (2001)Google Scholar
  5. 5.
    Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rep. 353, 1 (2001)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. 6.
    Milton, K.A.: The Casimir effect: recent controversies and progress. J. Phys. A 37, R209 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Precise comparison of theory and new experiment for the Casimir force leads to stronger constraints on thermal quantum effects and long-range interactions. Annals Phys. 318, 37 (2005)ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    Lambrecht, A., Maia Neto, P.A., Reynaud, S.: The Casimir effect within scattering theory. New J. Phys. 8, 243 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    Jaekel, M.T., Reynaud, S.: Movement and fluctuations of the vacuum. Rep. prog. phys. 60, 863 (1997)ADSCrossRefGoogle Scholar
  10. 10.
    Elizalde, E.: Quantum vacuum fluctuations and the cosmological constant. J Phys A 40, 6647 (2007)MathSciNetADSzbMATHCrossRefGoogle Scholar
  11. 11.
    Jaekel M.T., and Reynaud S.: In Proceeding of the Orleans School on Mass (2009)Google Scholar
  12. 12.
    Fischbach, E., Talmadge, C.: The Search for Non Newtonian Gravity. AIP Press/Springer, Berlin (1998)Google Scholar
  13. 13.
    Adelberger, E.G., Heckel, B.R., Nelson, A.E.: Tests of the gravitational inverse-square law. Ann. Rev. Nucl. Part. Sci. 53, 77 (2009)ADSGoogle Scholar
  14. 14.
    Kapner, D.J., Cook, T.S., Adelberger, E.G., Gundlach, J.H., Heckel, B.R., Hoyle, C.D., Swanson, H.E.: Tests of the gravitational inverse-square law below the dark-energy length scale. Phys. Rev. Lett. 98, 021101 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    Lambrecht A., and Reynaud S.: Poincaré Seminar on Vacuum Energy and Renormalization 1, 107 (2002) [arXiv quant-ph/0302073]Google Scholar
  16. 16.
    Onofrio, R.: Casimir forces and non-Newtonian gravitation. New J. Phys. 8, 237 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Novel constraints on light elementary particles and extra-dimensional physics from the Casimir effect. Eur. Phys. J. C 51, 963 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    Lepoutre, S., Jelassi, H., Lonij, V.P.A., Trenec, G., Buchner, M., Cronin, A.D., Vigue, J.: Dispersive atom interferometry phase shifts due to atom-surface interactions. Europhys. Lett. 88, 20002 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    Nesvizhevsky, V.V., Pignol, G., Protasov, K.V.: Neutron scattering and extra-short-range interactions. Phys. Rev. D 77, 034020 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Parsegian, V.A.: Van der Waals Forces: a Handbook for Biologists, Chemists, Engineers, and Physicists. Cambridge University Press, Cambridge (2006)Google Scholar
  21. 21.
    Sparnaay M.J.: In Physics in the Making. Eds Sarlemijn A., and Sparnaay M.J., North-Holland (1989)Google Scholar
  22. 22.
    Lamoreaux, S.K.L.: Demonstration of the casimir force in the 0.6 to 6 mu m range. Phys. Rev. Lett. 78, 5 (1997)ADSCrossRefGoogle Scholar
  23. 23.
    Mohideen, U., Roy, A.: Precision measurement of the Casimir force from 0.1 to 0.9 mu m. Phys. Rev. Lett. 81, 4549 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    Harris, B.W., Chen, F., Mohideen, U.: Precision measurement of the Casimir force using gold surfaces. Phys. Rev. A 62, 052109 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Ederth, T.: Template-stripped gold surfaces with 0.4 nm rms roughness suitable for force measurements: Application to the Casimir force in the 20–100 nm range. Phys. Rev. A 62, 062104 (2000)ADSCrossRefGoogle Scholar
  26. 26.
    Bressi, G., Carugno, G., Onofrio, R., Ruoso, G.: Measurement of the Casimir force between parallel metallic surfaces. Phys. Rev. Lett 88, 041804 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Decca, R.S., López, D., Fischbach, E., Krause, D.E.: Measurement of the Casimir force between dissimilar metals. Phys. Rev. Lett. 91, 050402 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Chen, F., Klimchitskaya, G.L., Mohideen, U., Mostepananko, V.M.: Theory confronts experiment in the Casimir force measurements: Quantification of errors and precision. Phys. Rev. A 69, 022117 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Decca, R.S., López, D., Fischbach, E., Klimchitskaya, G.L., Krause, D.E., Mostepanenko, V.M.: Tests of new physics from precise measurements of the Casimir pressure between two gold-coated plates. Phys. Rev. D 75, 077101 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    Munday, J.N., Capasso, F.: Precision measurement of the Casimir-Lifshitz force in a fluid. Phys. Rev. A 75, 060102(R) (2007)ADSCrossRefGoogle Scholar
  31. 31.
    van Zwol, P.J., Palasantzas, G., De Hosson, J.T.M.: Influence of random roughness on the Casimir force at small separations. Phys. Rev. B 77, 075412 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Munday, J.N., Capasso, F., Parsegian, V.A.: Measured long-range repulsive Casimir-Lifshitz forces. Nature 457, 170 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    Jourdan, G., Lambrecht, A., Comin, F., Chevrier, J.: Quantitative non-contact dynamic Casimir force measurements. Europhys. Lett. 85, 31001 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Masuda, M., Sasaki, M.: Limits on nonstandard forces in the submicrometer range. Phys. Rev. Lett. 102, 171101 (2009)ADSCrossRefGoogle Scholar
  35. 35.
    de Man, S., Heeck, K., Wijngaarden, R.J., Iannuzzi, D.: Halving the casimir force with conductive oxides. Phys. Rev. Lett. 103, 040402 (2009)CrossRefGoogle Scholar
  36. 36.
    Lambrecht, A., Reynaud, S.: Casimir force between metallic mirrors. Euro. Phys. J. D 8, 309 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    Svetovoy, V.B., van Zwol, P.J., Palasantzas, G., De Hosson, J.T.M.: Optical properties of gold films and the Casimir force. Phys. Rev. B 77, 035439 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Mehra, J.: Temperature correction to the casimir effect. Physica 37, 145 (1967)ADSCrossRefGoogle Scholar
  39. 39.
    Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: an image solution. Phys. Rev. 184, 1272 (1969)ADSCrossRefGoogle Scholar
  40. 40.
    Schwinger, J., de Raad, L.L., Milton, K.A.: Casimir effect in dielectrics. Ann. Phys. 115, 1 (1978)ADSCrossRefGoogle Scholar
  41. 41.
    Genet, C., Lambrecht, A., Reynaud, S.: Temperature dependence of the Casimir effect between metallic mirrors. Phys. Rev. A 62, 012110 (2000)ADSCrossRefGoogle Scholar
  42. 42.
    Boström, M., Sernelius, B.E.: Thermal effects on the Casimir force in the 0.1-5 mu m range. Phys. Rev. Lett. 84, 4757 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    Reynaud S., Lambrecht A., and Genet C.: In Quantum Field Theory Under the Influence of External Conditions. Ed. Milton K.A., Rinton Press (2004) [arXiv quant-ph/0312224]Google Scholar
  44. 44.
    Klimchitskaya, G.L., Mostepanenko, V.M.: Experiment and theory in the Casimir effect. Contemp. Phys. 47, 131 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    Brevik, I., Ellingsen, S.E., Milton, K.A.: Thermal corrections to the Casimir effect. New J. Phys. 8, 236 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    Brevik, I., Ellingsen, S.E., Høye, J.S., Milton, K.A.: Analytical and numerical demonstration of how the Drude dispersive model satisfies Nernst’s theorem for the Casimir entropy. J. Phys. A 41, 164017 (2008)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    Milton, K.A.: Recent developments in the Casimir effect. J. Phys. Conf. Ser. 161, 012001 (2009)ADSCrossRefGoogle Scholar
  48. 48.
    Jancovici, B., Šamaj, L.: Casimir force between two ideal-conductor walls revisited. Europhys. Lett. 72, 35 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    Buenzli, P.R., Martin, P.A.: The Casimir force at high temperature. Europhys. Lett. 72, 42 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    Bimonte, G.: Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors. Phys. Rev. A 79, 042107 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    Bezerra, V.B., Klimchitskaya, G.L., Mostepanenko, V.M.: Correlation of energy and free energy for the thermal casimir force between real metals. Phys. Rev. A 66, 062112 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    Ingold, G.L., Lambrecht, A., Reynaud, S.: Quantum dissipative Brownian motion and the Casimir effect. Phys. Rev. E 80, 041113 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    Deriagin, B.V., Abrikosova, I.I., Lifshitz, E.M.: Quart. Rev. 10, 295 (1968)CrossRefGoogle Scholar
  54. 54.
    Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP 2, 73 (1956)MathSciNetGoogle Scholar
  55. 55.
    Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: The general theory of van der Waals forces. Sov. Phys. Uspekhi 4, 153 (1961)ADSCrossRefGoogle Scholar
  56. 56.
    Balian, R., and Duplantier, B.: Electromagnetic waves near perfect conductors. I. Multiple scattering expansions. Distribution of modes. Ann. Phys. NY 104,300 (1977)MathSciNetADSCrossRefGoogle Scholar
  57. 57.
    Balian, R., and Duplantier, B.: Electromagnetic waves near perfect conductors. II. Casimir effect. Ann. Phys. NY 112,165 (1978)MathSciNetADSCrossRefGoogle Scholar
  58. 58.
    Balian R.: In Poincaré Seminar 2002 on Vacuum Energy. Eds Duplantier B., and Rivasseau V., Birkhäuser (2003)Google Scholar
  59. 59.
    Balian R., and Duplantier B.: In 15th SIGRAV Conference on General Relativity and Gravitation.[arXiv quant-ph/0408124] (2004)Google Scholar
  60. 60.
    Schaden, M., Spruch, L.: Focusing virtual photons: Casimir energies for some pairs of conductors. Phys. Rev. Lett. 84, 459 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    Jaffe, R.L., Scardicchio, A.: Casimir effect and geometric optics. Phys. Rev. Lett. 92, 070402 (2004)ADSCrossRefGoogle Scholar
  62. 62.
    Schröder, O., Sardicchio, A., Jaffe, R.L.: Casimir energy for a hyperboloid facing a plate in the optical approximation. Phys. Rev. A 72, 012105 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    Reynaud, S., Maia Neto, P.A., Lambrecht, A.: Casimir energy and geometry: beyond the proximity force approximation. J. Phys. A 41, 164004 (2008)MathSciNetADSCrossRefGoogle Scholar
  64. 64.
    Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Casimir forces between arbitrary compact objects. Phys. Rev. Lett 99, 170403 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    Bordag, M., Nikolaev, V.: Casimir force for a sphere in front of a plane beyond proximity force approximation. J. Phys. A 41, 164002 (2008)MathSciNetADSCrossRefGoogle Scholar
  66. 66.
    Wirzba, A.: The Casimir effect as a scattering problem. J. Phys. A 41, 164003 (2008)MathSciNetADSCrossRefGoogle Scholar
  67. 67.
    Klingmüller, K., Gies, H.: Geothermal Casimir phenomena. J. Phys. A 41, 164042 (2008)MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    Emig T.: Fluctuation-induced quantum interactions between compact objects and a plane mirror. J. Stat. Mech. Theory Exp. P04007 (2008)Google Scholar
  69. 69.
    Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Casimir energy between a plane and a sphere in electromagnetic vacuum. Phys. Rev. A 78, 012115 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Canaguier-Durand, A., Maia Neto, P.A., Cavero-Pelaez, I., Lambrecht, A., Reynaud, S.: Casimir interaction between plane and spherical metallic surfaces. Phys. Rev. Lett. 102, 230404 (2009)ADSCrossRefGoogle Scholar
  71. 71.
    Canaguier-Durand, A., MaiaNeto P., A., Lambrecht, A., Reynaud, S.: Thermal Casimir effect in the plane-sphere geometry. Phys. Rev. Lett. 104, 040403 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    Canaguier-Durand A., Maia Neto P.A., Lambrecht A., and Reynaud S. Thermal Casimir effect for Drude metals in the plane-sphere geometry. submitted [arXiv:1005.4294] (2010)Google Scholar
  73. 73.
    Krause, D.E., Decca, R.S., López, D., Fischbacoh, E.: Experimental investigation of the Casimir force beyond the proximity-force approximation. Phys. Rev. Lett. 98, 050403 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    Chen, F., Mohideen, U., Klimchitskaya, G.L., and Mostepanenko, V.M.: Demonstration of the lateral Casimir force. Phys. Rev. Lett. 88,101801 (2002)ADSCrossRefGoogle Scholar
  75. 75.
    Chen, F., Mohideen, U., Klimchitskaya, G.L., and Mostepanenko, V.M.: Demonstration of the lateral Casimir force. Phys. Rev. Lett. 66, 032113 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    Büscher, R., Emig, T.: Geometry and spectrum of Casimir forces. Phys. Rev. Lett. 94, 133901 (2005)ADSCrossRefGoogle Scholar
  77. 77.
    Rodrigues, R.B., Maia Neto, P.A., Lambrecht, A., and Reynaud, S.: Lateral casimir force beyond the proximity-force approximation. Phys. Rev. Lett. 96, 100402 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    Rodrigues, R.B., Maia Neto, P.A., Lambrecht, A., and Reynaud, S.:Lateral casimir force beyond the proximity-force approximation. Reply. Phys. Rev. Lett. 98, 068902 (2007)ADSCrossRefGoogle Scholar
  79. 79.
    Rodrigues, R.B., Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Lateral Casimir force beyond the proximity force approximation: A nontrivial interplay between geometry and quantum vacuum. Phys. Rev. A 75, 062108 (2007)ADSCrossRefGoogle Scholar
  80. 80.
    Chan, H.B., Bao, Y., Zou, J., Cirelli, R.A., Klemens, F., Mansfield, W.M., Pai, C.S.: Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101, 030401 (2008)ADSCrossRefGoogle Scholar
  81. 81.
    Chiu, H.C., Klimchitskaya, G.L., Marachevsky, V.N., Mostepanenko, V.M., Mohideen, U.: Demonstration of the asymmetric lateral Casimir force between corrugated surfaces in the nonadditive regime. Phys. Rev. B 80, 121402 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    Lambrecht, A., Marachevsky, V.N.: Casimir interaction of dielectric gratings. Phys. Rev. Lett. 101, 160403 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    Lambrecht, A.: Nanotechnology - Shaping the void. Nature 454, 836 (2008)ADSCrossRefGoogle Scholar
  84. 84.
    Jaekel M.T., and Reynaud S.: Casimir force between partially transmitting mirrors. J. Physique I-1 1395 (1991) [arXiv quant-ph/0101067]Google Scholar
  85. 85.
    Genet, C., Lambrecht, A., Reynaud, S.: Casimir force and the quantum theory of lossy optical cavities. Phys. Rev. A 67, 043811 (2003)ADSCrossRefGoogle Scholar
  86. 86.
    Milton, K.A., Wagner, J.: Multiple scattering methods in Casimir calculations. J. Phys. A 41, 155402 (2008)MathSciNetADSCrossRefGoogle Scholar
  87. 87.
    Bulgac, A., Magierski, P., Wirzba, A.: Scalar Casimir effect between Dirichlet spheres or a plate and a sphere. Phys. Rev. D 73, 025007 (2006)ADSCrossRefGoogle Scholar
  88. 88.
    Bordag, M.: Casimir effect for a sphere and a cylinder in front of a plane and corrections to the proximity force theorem. Phys. Rev. D 73, 125018 (2006)ADSCrossRefGoogle Scholar
  89. 89.
    Kenneth, O., and Klich, I.: Opposites attract: A theorem about the Casimir force. Phys. Rev. Lett. 97,160401 (2006)ADSCrossRefGoogle Scholar
  90. 90.
    Kenneth, O., and Klich, I.: Opposites attract: A theorem about the Casimir force. Phys. Rev. B 78,014103 (2008)Google Scholar
  91. 91.
    Emig, T., Jaffe R., L.: Casimir forces between arbitrary compact objects. J. Phys. A 41, 164001 (2008)MathSciNetADSCrossRefGoogle Scholar
  92. 92.
    Rahi, S.J., Emig, T., Graham, N., Jaffe, R.L., Kardar, M.: Scattering theory approach to electrodynamic Casimir forces. Phys. Rev. D 80, 085021 (2009)ADSCrossRefGoogle Scholar
  93. 93.
    Langfeld, K., Moyaerts, L., Gies, H.: Casimir effect on the worldline. J. High En. Phys. 0306, 018 (2003)MathSciNetGoogle Scholar
  94. 94.
    Gies, H., Klingmüller, K.: Casimir effect for curved geometries: Proximity-force-approximation validity limits. Phys. Rev. Lett. 96, 220401 (2006)ADSCrossRefGoogle Scholar
  95. 95.
    Emig, T., Jaffe, R.L., Kardar, M., Scardicchio, A.: Casimir interaction between a plate and a cylinder. Phys. Rev. Lett. 96, 080403 (2006)ADSCrossRefGoogle Scholar
  96. 96.
    Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R.: Exact Casimir interaction between eccentric cylinders. Phys. Rev. A 74, 020101 (2006)ADSCrossRefGoogle Scholar
  97. 97.
    Mazzitelli, F.C., Dalvit, D.A.R., Lombardo, F.C.: Exact zero-point interaction energy between cylinders. New J. Phys. 8, 240 (2006)ADSCrossRefGoogle Scholar
  98. 98.
    Rodriguez, A., Ibanescu, M., Iannuzzi, D., Capasso, F., Joannopoulos, J.D., Johnson, S.G.: Computation and visualization of Casimir forces in arbitrary geometries: Nonmonotonic lateral-wall forces and the failure of proximity-force approximations. Phys. Rev. Lett. 99, 080401 (2007)ADSCrossRefGoogle Scholar
  99. 99.
    Döbrich B., DeKieviet M., and Gies H.: Nonpertubative access to Casimir-Polder forces. arXiv:0910.5889 (2009)Google Scholar
  100. 100.
    Bordag M., and Nikolaev V.: First analytic correction beyond PFA for the electromagnetic field in sphere-plane geometry. arXiv:0911.0146 (2009)Google Scholar
  101. 101.
    Gies H., and Weber A.: Geometry-temperature interplay in the Casimir effect. arXiv:0912.0125 (2009)Google Scholar
  102. 102.
    Bordag M., and Pirozhenko I.: Vacuum energy between a sphere and a plane at finite temperature. arXiv:0912.4047 (2010)Google Scholar
  103. 103.
    Emig T.: Casimir physics: geometry, shape and material. arXiv:1003.0192 (2010)Google Scholar
  104. 104.
    Zandi R., Emig T., and Mohideen U.: Quantum and thermal Casimir interaction between a sphere and a plate: Comparison of Drude and plasma models. arXiv:1003.0068 (2010)Google Scholar
  105. 105.
    Weber A., and Gies H.: Non-monotonic thermal Casimir force from geometry-temperature interplay. arXiv:1003.0430 (2010)Google Scholar
  106. 106.
    Weber A., and Gies H.: Geothermal Casimir phenomena for the sphere-plane and cylinder-plane configurations. arXiv:1003.3420 (2010)Google Scholar
  107. 107.
    Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Roughness correction to the Casimir force: Beyond the proximity force approximation. Europhys. Lett. 69, 924 (2005)ADSCrossRefGoogle Scholar
  108. 108.
    Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Casimir effect with rough metallic mirrors. Phys. Rev. A 72, 012115 (2005)ADSCrossRefGoogle Scholar
  109. 109.
    Rodrigues, R.B., Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Vacuum-induced torque between corrugated metallic plates. Europhys. Lett. 76, 822 (2006)ADSCrossRefGoogle Scholar
  110. 110.
    Rodrigues, R.B., Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Phys. Rev. Lett. 100, 040405 (2008)CrossRefGoogle Scholar
  111. 111.
    Dalvit, D.A.R., Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Probing quantum-vacuum geometrical effects with cold atoms. Phys. Rev. Lett. 100, 040405 (2008)ADSCrossRefGoogle Scholar
  112. 112.
    Messina, R., Dalvit, D.A.R., Maia Neto, P.A., Lambrecht, A., Reynaud, S.: Scattering approach to dispersive atom-surface interactions. Phys. Rev. A 80, 022119 (2009)ADSCrossRefGoogle Scholar
  113. 113.
    Johannson, P., Apell, P.: Geometry effects on the van der Waals force in atomic force microscopy. Phys Rev. B 56, 4159 (1997)ADSCrossRefGoogle Scholar
  114. 114.
    Noguez, C., Roman-Velazquez, C.E., Esquivel-Sirvent, R., Villarreal, C.: High-multipolar effects on the Casimir force: The non-retarded limit. Europhys. Lett. 67, 191 (2004)ADSCrossRefGoogle Scholar
  115. 115.
    Feinberg, G., Sucher, J.: General theory of the van der Waals interactions: A model-independent approach. Phys Rev. A 2, 2395 (1970)ADSCrossRefGoogle Scholar
  116. 116.
    Power, E.A., Thirunamachandran, T.: Zero-point energy differences and many-body dispersion forces. Phys Rev. A 50, 3929 (1994)ADSCrossRefGoogle Scholar
  117. 117.
    Jaekel, M.T., Reynaud, S.: Fluctuations and dissipation for a mirror in vacuum. Quantum Opt. 4, 39 (1992)MathSciNetADSCrossRefGoogle Scholar
  118. 118.
    Jaekel, M.T., Reynaud, S.: Motional Casimir force. Journal de Physique I- 2, 149 (1992)ADSCrossRefGoogle Scholar
  119. 119.
    Jaekel, M.T., Reynaud, S.: Causality, stability and passivity for a mirror in vacuum. Phys. Lett. A 167, 227 (1992)ADSCrossRefGoogle Scholar
  120. 120.
    Jaekel, M.T., Reynaud, S.: Friction and inertia for a mirror in a thermal field. Phy. Lett. A 172, 319 (1993)ADSCrossRefGoogle Scholar
  121. 121.
    Jaekel, M.T., Reynaud, S.: Quantum fluctuations of position of a mirror in vacuum. J. Phys. I-3, 1 (1993)Google Scholar
  122. 122.
    Jaekel, M.T., and Reynaud. S.: Inertia of Casimir energy. J. Phys I-3,1093 (1993)Google Scholar
  123. 123.
    Jaekel, M.T., Reynaud, S.: Quantum fluctuations of mass for a mirror in vacuum. Phys. Lett. A 180, 9 (1993)ADSCrossRefGoogle Scholar
  124. 124.
    Lambrecht, A., Jaekel, M.T., Reynaud, S.: Motion induced radiation from a vibrating cavity. Phys. Rev. Lett. 77, 615 (1996)ADSCrossRefGoogle Scholar
  125. 125.
    Lambrecht, A., Jaekel M., T., Reynaud, S.: The Casimir force for passive mirrors. Phys. Lett. A 225, 188 (1997)MathSciNetADSzbMATHCrossRefGoogle Scholar
  126. 126.
    Pitaevskii, L.P.: Thermal lifshitz force between an atom and a conductor with a small density of carriers. Phys. Rev. Lett. 101, 163202 (2008)ADSCrossRefGoogle Scholar
  127. 127.
    Geyer, B., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Comment on ”Contribution of Drifting Carriers to the Casimir-Lifshitz and Casimir-Polder Interactions with Semiconductor Materials”. Phys. Rev. Lett. 102, 189301 (2009)ADSCrossRefGoogle Scholar
  128. 128.
    Pitaevskii, L.P.: Phys. Rev. Lett. 102, 189302 (2009)ADSCrossRefGoogle Scholar
  129. 129.
    Dalvit, D.A.R., Lamoreaux, S.K.: Contribution of drifting carriers to the Casimir-Lifshitz and Casimir-Polder interactions with semiconductor materials. Phys. Rev. Lett. 101, 163203 (2008)ADSCrossRefGoogle Scholar
  130. 130.
    Decca, R.S., Fischbach, E., Geyer, B., Klimchitskaya, G.L., Krause, D.E., Lopez, D., Mohideen, U., Mostepanenko, V.M.: Comment on ”Contribution of Drifting Carriers to the Casimir-Lifshitz and Casimir-Polder Interactions with Semiconductor Materials”. Phys. Rev. Lett. 102, 189303 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    Dalvit, D.A.R., Lamoreaux, S.K.: Phys. Rev. Lett. 102, 189304 (2009)ADSCrossRefGoogle Scholar
  132. 132.
    Svetovoy, V.B.: Application of the Lifshitz theory to poor conductors. Phys. Rev. Lett. 101, 163603 (2008)ADSCrossRefGoogle Scholar
  133. 133.
    Svetovoy, V.B.: Application of the Lifshitz theory to poor conductors. Phys. Rev. Lett. 102, 219903(E) (2009)ADSCrossRefGoogle Scholar
  134. 134.
    Kats, E.I.: JETP 46, 109 (1977)ADSGoogle Scholar
  135. 135.
    Barnett, S.M., Jeffers, J., Gatti, A., Loudon, R.: Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134 (1998)ADSCrossRefGoogle Scholar
  136. 136.
    Dalvit, D.A.R., Lombardo, F.C., Mazzitelli, F.D., Onofrio, R.: Casimir force between eccentric cylinders. EuroPhys. Lett. 67, 517 (2004)ADSCrossRefGoogle Scholar
  137. 137.
    Mazzitelli, F.D., Dalvit, D.A.R., Lombardo, F.C.: Exact zero-point interaction energy between cylinders. New Journal of Physics 8, 240 (2006)ADSCrossRefGoogle Scholar
  138. 138.
    Bordag, M., Nikolaev, V.: The vacuum energy for two cylinders with one increasing in size. J. Phys. A 42, 415203 (2009)MathSciNetCrossRefGoogle Scholar
  139. 139.
    Zaheer S., Rahi J., Emig T., and Jaffe R. L.: Casimir interactions of an object inside a spherical metal shell. arXiv 0908.3270 (2009)Google Scholar
  140. 140.
    Chiu, H.C., Klimchitskaya, G.L., Marachevsky, V.N., Mostepanenko, V.M., Mohideen, U.: Lateral Casimir force between sinusoidally corrugated surfaces: Asymmetric profiles, deviations from the proximity force approximation, and comparison with exact theory. Phys. Rev. B 81, 115417 (2010)ADSCrossRefGoogle Scholar
  141. 141.
    Munday, J., Ianuzzi, D., Barash, Y., Capasso, F.: Torque on birefringent plates induced by quantum fluctuations. Phys. Rev. A 71, 042102 (2005)ADSCrossRefGoogle Scholar
  142. 142.
    Bergström, L.: Hamaker constants of inorganic materials. Adv. in Colloid. and Interf. Sci. 70, 125 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Astrid Lambrecht
    • 1
    Email author
  • Antoine Canaguier-Durand
    • 1
  • Romain Guérout
    • 1
  • Serge Reynaud
    • 1
  1. 1.Laboratoire Kastler BrosselCNRS, ENS, Université Pierre et Marie Curie case 74Paris Cedex 05France

Personalised recommendations