Fluctuations, Dissipation and the Dynamical Casimir Effect

  • Diego A. R. DalvitEmail author
  • Paulo A. Maia Neto
  • Francisco Diego Mazzitelli
Part of the Lecture Notes in Physics book series (LNP, volume 834)


Vacuum fluctuations provide a fundamental source of dissipation for systems coupled to quantum fields by radiation pressure. In the dynamical Casimir effect, accelerating neutral bodies in free space give rise to the emission of real photons while experiencing a damping force which plays the role of a radiation reaction force. Analog models where non-stationary conditions for the electromagnetic field simulate the presence of moving plates are currently under experimental investigation. A dissipative force might also appear in the case of uniform relative motion between two bodies, thus leading to a new kind of friction mechanism without mechanical contact. In this paper, we review recent advances on the dynamical Casimir and non-contact friction effects, highlighting their common physical origin.


Plasma Sheet Transverse Magnetic Optical Parametric Oscillator Transverse Electric Casimir Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work of DARD was funded by DARPA/MTO’s Casimir Effect Enhancement program under DOE/NNSA Contract DE-AC52-06NA25396. PAMN thanks CNPq and CNE/FAPERJ for financial support and the Universidad de Buenos Aires for its hospitality during his stay at Buenos Aires. FDM thanks the Universidad de Buenos Aires, CONICET and ANPCyT for financial support. We are grateful to Giuseppe Ruoso for providing a picture of MIR experiment at Padova.


  1. 1.
    Barton, G.: On the fluctuations of the Casimir force. J. Phys. A: Math. Gen. 24, 991–1005 (1991)MathSciNetADSGoogle Scholar
  2. 2.
    Barton, G.: On the fluctuations of the Casimir force. 2: the stress-correlation function. J. Phys. A: Math. Gen. 24, 5533–5551 (1991)MathSciNetADSGoogle Scholar
  3. 3.
    Jaekel, M.-T., Reynaud, S.: Quantum fluctuations of position of a mirror in vacuum. J. Phys. (Paris) I 3, 1–20 (1993)ADSGoogle Scholar
  4. 4.
    Dalvit, D.A.R., Maia Neto, P.A.: Decoherence via the Dynamical Casimir Effect. Phys. Rev. Lett. 84, 798–801 (2000)ADSGoogle Scholar
  5. 5.
    Maia Neto, P.A., Dalvit, D.A.R.: Radiation pressure as a source of decoherence. Phys. Rev. A. 62, 042103 (2000)ADSGoogle Scholar
  6. 6.
    Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951)MathSciNetADSzbMATHGoogle Scholar
  7. 7.
    Ford, L.H., Vilenkin, A.: Quantum radiation by moving mirrors. Phys. Rev. D 25, 2569–2575 (1982)MathSciNetADSGoogle Scholar
  8. 8.
    Moore, G.T.: Quantum theory of electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys. 11, 2679 (1970)ADSGoogle Scholar
  9. 9.
    Castagnino, M., Ferraro, R.: The radiation from moving mirrors: The creation and absorption of particles. Ann. Phys. (NY) 154, 1–23 (1984)ADSGoogle Scholar
  10. 10.
    Fulling, S.A., Davies, P.C.W.: Radiation from a moving mirror in two dimensional space-time-conformal anomaly. Proc. R. Soc. A 348, 393–414 (1976)MathSciNetADSzbMATHGoogle Scholar
  11. 11.
    Hawking, S.W.: Black-hole explosions. Nature (London) 248, 30–31 (1974)ADSGoogle Scholar
  12. 12.
    Hawking, S.W.: Particle creation by black-holes. Commun. Math. Phys. 43, 199–220 (1975)MathSciNetADSGoogle Scholar
  13. 13.
    Braginsky, V.B., Khalili, F.Ya.: Friction and fluctuations produced by the quantum ground-state. Phys. Lett 161, 197–201 (1991)Google Scholar
  14. 14.
    Jaekel, M.-T., Reynaud, S.: Fluctuations and dissipation for a mirror in vacuum. Quantum Opt. 4, 39–53 (1992)MathSciNetADSGoogle Scholar
  15. 15.
    Braginsky, V.B., Vorontsov, Y.u.I.: Quantum-mechanical limitations in macroscopic experiments and modern experimental techniques. Usp. Fiz. Nauk. 114, 41–53 (1974)Google Scholar
  16. 16.
    Caves, C.: Defense of the standard quantum limit for free-mass position. Phys. Rev. Lett. 54, 2465–2468 (1985)MathSciNetADSGoogle Scholar
  17. 17.
    Jaekel, M.-.T., Reynaud, S.: Quantum limits in interferometric measurements. Europhys. Lett. 13, 301–306 (1990)ADSGoogle Scholar
  18. 18.
    Kubo, R.: Fluctuation-dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966)ADSGoogle Scholar
  19. 19.
    Maia Neto, P.A., Reynaud, S.: Dissipative force on a sphere moving in vacuum. Phys. Rev. A 47, 1639–1646 (1993)ADSGoogle Scholar
  20. 20.
    Barton, G.: New aspects of the Casimir effect: fluctuations and radiative reaction. In: Berman, P.Cavity Quantum Electrodyamics, Supplement: Advances in Atomic, Molecular and Optical Physics. Academic Press, New York (1993)Google Scholar
  21. 21.
    Maia Neto, P.A., Machado, L.A.S.: Radiation Reaction Force for a Mirror in Vacuum. Braz. J. Phys. 25, 324–334 (1995)Google Scholar
  22. 22.
    Golestanian, R,.Kardar, M.: Mechanical Response of Vacuum. Phys. Rev. Lett. 78, 3421–3425 (1997); Phys. Rev. A 58, 1713–1722 (1998)Google Scholar
  23. 23.
    Volotikin, A.I., Persson, B.N.J.: Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291–1329 (2007)ADSGoogle Scholar
  24. 24.
    Pendry, J.B.: Shearing the vacuum-quantum friction. J. Phys.:Condens. Matter 9, 10301–10320 (1997)ADSGoogle Scholar
  25. 25.
    Nussenzveig, H.M.: Causality and dispersion relations. Academic Press, New York (1972)Google Scholar
  26. 26.
    Lambrecht, A., Jaekel, M.-T., Reynaud, S.: Motion induced radiation from a vibrating cavity. Phys. Rev. Lett. 77, 615–618 (1996)ADSGoogle Scholar
  27. 27.
    Maia Neto, P.A., Machado, L.A.S.: Quantum radiation generated by a moving mirror in free space. Phys. Rev. A. 54, 3420–3427 (1996)ADSGoogle Scholar
  28. 28.
    Montazeri, M., Miri, M.: Radiation from a dynamically deforming mirror immersed in the electromagnetic vacuum. Phys. Rev. A. 77, 053815 (2008)ADSGoogle Scholar
  29. 29.
    Mundarain, D.F., Maia Neto, P.A.: Quantum radiation in a plane cavity with moving mirrors. Phys. Rev. A. 57, 1379–1390 (1998)ADSGoogle Scholar
  30. 30.
    Maia Neto, P.A.: The dynamical Casimir effect with cylindrical waveguides. J. Opt. B: Quantum Semiclass. Opt. 7, S86–S88 (2005)Google Scholar
  31. 31.
    Pascoal, F., Celeri, L.C., Mizrahi, S.S., Moussa, M.H.Y.: Dynamical Casimir effect for a massless scalar field between two concentric spherical shells. Phys. Rev. A. 78, 032521 (2008)ADSGoogle Scholar
  32. 32.
    Pascoal, F., Celeri, L.C., Mizrahi, S.S., Moussa, M.H.Y., Farina, C.: Dynamical Casimir effect for a massless scalar field between two concentric spherical shells with mixed boundary conditions. Phys. Rev. A. 80, 012503 (2009)ADSGoogle Scholar
  33. 33.
    Eberlein, C.: Theory of quantum radiation observed as sonoluminescence. Phys. Rev. A. 53, 2772–2787 (1996)ADSGoogle Scholar
  34. 34.
    Mazzitelli, F.D., Millán, X.O.: Photon creation in a spherical oscillating cavity. Phys Rev. A. 73, 063829 (2006)ADSGoogle Scholar
  35. 35.
    Dodonov, V.V., Klimov, A.B.: Generation and detection of photons in a cavity with a resonantly oscillating boundary. Phys. Rev. A. 53, 2664–2682 (1996)ADSGoogle Scholar
  36. 36.
    Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D.: Resonant photon creation in a three di-mensional oscillating cavity. Phys. Rev. A. 64, 013808 (2001)ADSGoogle Scholar
  37. 37.
    Crocce, M., Dalvit, D.A.R., Mazzitelli, F.D.: Quantum electromagnetic field in a three dimensional oscillating cavity. Phys. Rev. A. 66, 033811 (2002)ADSGoogle Scholar
  38. 38.
    Crocce, M., Dalvit, D.A.R., Lombardo, F., Mazzitelli, F.D.: Hertz potentials approach to the dynamical Casimir effect in cylindrical cavities of arbitrary section. J. Opt. B: Quantum Semiclass. Opt. 7, S32–S39 (2005)ADSGoogle Scholar
  39. 39.
    Dalvit, D.A.R., Mazzitelli, F.D.: Renormalization-group approach to the dynamical Casimir effect. Phys. Rev. A. 57, 2113–2119 (1998)ADSGoogle Scholar
  40. 40.
    Lambrecht, A., Jaekel, M.-T., Reynaud, S.: Frequency up-converted radiation from a cavity moving in vacuum. Eur.Phys.J. D. 3, 95–104 (1998)ADSGoogle Scholar
  41. 41.
    Dalvit, D.A.R., Mazzitelli, F.D.: Creation of photons in an oscillating cavity with two moving mirrors. Phys. Rev. A. 59, 3049–3059 (1999)MathSciNetADSGoogle Scholar
  42. 42.
    Jaekel, M.-T., Reynaud, S.: Motional Casimir force. J. Phys. I. 2, 149–165 (1992)Google Scholar
  43. 43.
    Dezael, F.X., Lambrecht, A.: Analogue Casimir radiation using an optical parametric oscillator. Europhys. Lett. 89, 14001 (2010)ADSGoogle Scholar
  44. 44.
    Dodonov, V.V.: Dynamical Casimir effect in a nondegenerate cavity with losses and detuning. Phys. Rev. A. 58, 4147–4152 (1998)ADSGoogle Scholar
  45. 45.
    Schaller, G., Schützhold, R., Plunien, G., Soff, G.: Dynamical Casimir effect in a leaky cavity at finite temperature. Phys. Rev. A. 66, 023812 (2002)ADSGoogle Scholar
  46. 46.
    Kim, W.-J., Brownell, J.H., Onofrio, R.: Detectability of dissipative motion in quantum vacuum via superradiance. Phys. Rev. Lett. 96, 200402 (2006)ADSGoogle Scholar
  47. 47.
    Yablonovitch, E.: Accelerating reference frame for electromagnetic waves in a rapidly growing plasma: Unruh-Davies-Fulling-DeWitt radiation and the nonadiabatic Casimir effect. Phys Rev. Lett. 62, 1742–1745 (1989)ADSGoogle Scholar
  48. 48.
    Yablonovitch, E., Heritage, J.P., Aspnes, D.E., Yafet, Y.: Virtual photoconductivity. Phys. Rev. Lett. 63, 976–979 (1989)ADSGoogle Scholar
  49. 49.
    Lozovik, Y.E., Tsvetus, V.G., Vinogradov, E.A.: Femtosecond parametric excitation of electromagnetic field in a cavity. JETP Lett. 61, 723–729 (1995)ADSGoogle Scholar
  50. 50.
    Lozovik, Y.E., Tsvetus, V.G., Vinogradov, E.A.: Parametric excitation of vacuum by use of femtosecond laser pulses. Phys. Scr. 52, 184–190 (1995)ADSGoogle Scholar
  51. 51.
    Crocce, M., Dalvit, D.A.R., Lombardo, F., Mazzitelli F., D.: Model for resonant photon creation in a cavity with time dependent conductivity. Phys. Rev. A. 70, 033811 (2004)ADSGoogle Scholar
  52. 52.
    Mendonça, J.T., Guerreiro, A.: Phys. Rev. A. 80, 043603 (2005)Google Scholar
  53. 53.
    Braggio, C., Bressi, G., Carugno, G., Del Noce, C., Galeazzi, G., Lombardi, A., Palmieri, A., Ruoso, G, Zanello, D.: A novel experimental approach for the detection of the dynamic Casimir effect. Europhys. Lett. 70, 754–760 (2005)ADSGoogle Scholar
  54. 54.
    Braggio, C., Bressi, G., Carugno, G., Della Valle, F., Galeazzi, G., Ruoso, G.: Characterization of a low noise microwave receiver for the detection of vacuum photons. Nucl. Instrum. Methods Phys. Res. A 603, 451–455 (2009)ADSGoogle Scholar
  55. 55.
    Takashima, K., Hatakenaka, N., Kurihara, S., Zeilinger, A.: Nonstationary boundary effect for a quantum flux in superconducting nanocircuits. J. Phys. A. 41, 164036 (2008)MathSciNetADSGoogle Scholar
  56. 56.
    Castellanos-Beltran, M.A., Irwin, K.D., Hilton, G.C., Vale, L.R., Lehnert, K.W.: Amplification and squeezing of quantum noise with a tunable Josephson metamaterial. Nat. Phys. 4, 928–931 (2008)Google Scholar
  57. 57.
    Johansson, J.R., Johansson, G., Wilson, C.M., Nori, F.: Dynamical Casimir effect in a superconducting coplanar waveguide. Phys. Rev. Lett. 103, 147003 (2009)ADSGoogle Scholar
  58. 58.
    Wilson, C. M., Duty, T., Sandberg, M., Persson, F., Shumeiko, V., Delsing, P.: Photon generation in an electromagnetic cavity with a time-dependent boundary, arXiv:1006.2540Google Scholar
  59. 59.
    Carusotto, I., Balbinot, R., Fabbri, A., Recati, A.: Density correlations and analog dynamical Casimir emission of Bogoliubov phonons in modulated atomic Bose–Einstein condensates. Eur. Phys. J. D. 56, 391–404 (2010)ADSGoogle Scholar
  60. 60.
    Roberts, D., Pomeau, Y.: Casimir-like force arising from quantum fluctuations in a slow-moving dilute Bose–Einstein condensate. Phys. Rev. Lett. 95, 145303 (2005)ADSGoogle Scholar
  61. 61.
    Jaekel, M.-T., Reynaud, S.: Movement and fluctuations of the vacuum. Rep. Prog. Phys. 60, 863–887 (1997)ADSGoogle Scholar
  62. 62.
    Kardar, M., Golestanian, R.: The ”friction” of vacuum, and other fluctuation-induced forces. Rev. Mod. Phys. 71, 1233–1245 (1999)ADSGoogle Scholar
  63. 63.
    Dodonov, V.V.: Nonstationary Casimir effect and analytical solutions for quantum fields in cavities with moving boundaries. Adv. Chem. Phys. 119, 309–394 (2001)Google Scholar
  64. 64.
    Dodonov, V.V.: Dynamical Casimir effect: Some theoretical aspects. J. Phys.: Conf. Ser. 161, 012027 (2009)ADSGoogle Scholar
  65. 65.
    Dodonov, V. V.: Current status of the dynamical Casimir effect. arXiv:1004.3301 (2010)Google Scholar
  66. 66.
    Fosco, C.D, Lombardo, F.C., Mazzitelli, F.D.: Quantum dissipative effects in moving mirrors: a functional approach. Phys. Rev. D. 76, 085007 (2007)MathSciNetADSGoogle Scholar
  67. 67.
    Barton, G., Eberlein, C.: On quantum radiation from a moving body with finite refractive-index. Ann. Phys. (New York) 227, 222–274 (1993)ADSGoogle Scholar
  68. 68.
    Alves, D.T., Farina, C., Maia Neto, P.A.: Dynamical Casimir effect with Dirichlet and Neumann boundary conditions. J. Phys. A: Math. Gen. 36, 11333–11342 (2003)MathSciNetADSzbMATHGoogle Scholar
  69. 69.
    Alves, D.T., Granhen, E.R., Lima, M.G.: Quantum radiation force on a moving mirror with Dirichlet and Neumann boundary conditions for a vacuum, finite temperature, and a coherent state. Phys. Rev. D. 77, 125001 (2008)ADSGoogle Scholar
  70. 70.
    Mintz, B., Farina, C., Maia Neto, P.A., Rodrigues, R.: Casimir forces for moving boundaries with Robin conditions. J. Phys. A: Math. Gen. 39, 6559–6565 (2006)MathSciNetADSzbMATHGoogle Scholar
  71. 71.
    Dodonov, V.V., Klimov, A.B., Man’ko, V.I.: Generation of squeezed states in a resonator with a moving wall. Phys. Lett. A. 149, 225–228 (1990)ADSGoogle Scholar
  72. 72.
    Dodonov, V.V., Klimov, A.B.: Long-time asymptotics of a quantized electromagnetic-field in a resonator with oscillating boundary. Phys. Lett. A. 167, 309–313 (1992)ADSGoogle Scholar
  73. 73.
    Mintz, B., Farina, C., Maia Neto, P.A., Rodrigues, R.: Particle creation by a moving boundary with a Robin boundary condition. J. Phys. A: Math. Gen. 39, 11325–11333 (2006)MathSciNetADSzbMATHGoogle Scholar
  74. 74.
    Jaekel, M.-T., Reynaud, S.: Causality, stability and passivity for a mirror in vacuum. Phys. Lett. A. 167, 227–232 (1992)ADSGoogle Scholar
  75. 75.
    Barton, G., Calogeracos, A.: On the quantum electrodynamics of a dispersive mirror. 1: Mass shifts, radiation, and radiative reaction. Ann. Phys. (New York) 238, 227–267 (1995)ADSGoogle Scholar
  76. 76.
    Verlot, P., Tavernarakis, A., Briant, T., Cohadon, P.-.F., Heidmann, A.: Scheme to probe optomechanical correlations between two optical beams down to the quantum level. Phys. Rev. Lett. 102, 103601 (2009)ADSGoogle Scholar
  77. 77.
    Schliesser, A., Arcizet, O., Riviere, R., Anetsberger, G., Kippenberg, T.J.: Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit. Nature Phys. 5, 509–514 (2009)ADSGoogle Scholar
  78. 78.
    Maia Neto, P.A.: Vacuum radiation pressure on moving mirrors. J. Phys. A: Math. Gen. 27, 2167–2180 (1994)ADSGoogle Scholar
  79. 79.
    Barton, G., North, C.A.: Peculiarities of Quantum Radiation in Three Dimensions from Moving Mirrors with High Refractive Index. Ann. Phys. (New York) 252, 72–114 (1996)ADSGoogle Scholar
  80. 80.
    Gütig, R., Eberlein, C.: Quantum radiation from moving dielectrics in two, three and more spatial dimensions. J. Phys. A: Math. Gen. 31, 6819–6838 (1998)ADSzbMATHGoogle Scholar
  81. 81.
    Barton, G.: The quantum radiation from mirrors moving sideways. Ann. Phys. (New York) 245, 361–388 (1996)ADSGoogle Scholar
  82. 82.
    Pendry, J.B.: Quantum friction—fact or fiction?. New J. Phys. 12, 033028 (2010)ADSGoogle Scholar
  83. 83.
    Volotikin, A.I., Persson, B.N.J.: Theory of friction: the contribution from a fluctuating electromagnetic field. J. Phys.:Condens. Matter. 11, 345–359 (1999)ADSGoogle Scholar
  84. 84.
    Lifshitz, E.M.: The theory of molecular attractive forces between solids. Sov. Phys. JETP. 2, 73–83 (1956)MathSciNetGoogle Scholar
  85. 85.
    Buhmann, S.Y, Welsch, D.-G.: Dispersion forces in macroscopic quantum electrodynamics. Progr. Quantum Electron. 31, 51–130 (2007)ADSGoogle Scholar
  86. 86.
    Dedkov, G.V., Kyasov, A.A.: Electromagnetic and fluctuation-electromagnetic forces of interaction of moving particles and nanoprobes with surfaces: a non-relativistic consideration. Phys. Solid State. 44, 1809–1832 (2002)ADSGoogle Scholar
  87. 87.
    Hu, B.L., Roura, A., Shresta, S.: Vacuum fluctuations and moving atom/detectors: from the Casimir-Polder to the Unruh-Davies-DeWitt-Fulling effect. J. Opt. B: Quantum Semiclass. Opt. 6, S698–S705 (2004)ADSGoogle Scholar
  88. 88.
    Scheel, S., Buhmann, S.Y.: Casimir-Polder forces on moving atoms. Phys. Rev. A. 80, 042902 (2009)ADSGoogle Scholar
  89. 89.
    Dodonov, V.V., Klimov, A.B., Nikonov, D.E.: Quantum phenomena in resonators with moving walls. J. Math. Phys. 34, 2742 (1993)MathSciNetADSzbMATHGoogle Scholar
  90. 90.
    Petrov, N.P.: The dynamical Casimir effect in a periodically changing domain: a dynamical systems approach. J. Opt B: Quant. Semiclass. Optics. 7, S89–S99 (2005)ADSGoogle Scholar
  91. 91.
    Ruser, M.: Vibrating cavities: a numerical approach. J. Opt. B: Quant. Semiclass. Optics. 7, S100–S115 (2005)ADSGoogle Scholar
  92. 92.
    Alves, D.T., Farina, C., Granhen, E.R.: Dynamical Casimir effect in a resonant cavity with mixed boundary conditions. Phys. Rev. A. 73, 063818 (2006)ADSGoogle Scholar
  93. 93.
    Farina, C., Azevedo, D., Pascoal, F.: Dynamical Casimir effect with Robin boundary conditions in a three dimensional open cavity. In: Milton, K.A., Bordag, M. (eds.) Proceedings of QFEXT09, p. 334. World Scientific, Singapore (2010). arXiv:1001.2530Google Scholar
  94. 94.
    Law, C.K.: Resonance response of the quantum vacuum to an oscillating boundary. Phys. Rev. Lett. 73, 1931–1934 (1994)ADSGoogle Scholar
  95. 95.
    Schützhold, R., Plunien, G., Soff, G.: Trembling cavities in the canonical approach. Phys.Rev. A. 57, 2311–2318 (1998)ADSGoogle Scholar
  96. 96.
    Bender, C.M., Orszag, S.A.: Advanced Mathematical Methods for Scientists and Engineers. McGraw Hill, New York (1978)zbMATHGoogle Scholar
  97. 97.
    Boyd, R.: Nonlinear Optics. 3rd edn. Academic Press, Burlington USA (2008)Google Scholar
  98. 98.
    Ji, J.-Y., Soh, K.-S., Cai, R.-G., Kim, S.P.: Electromagnetic fields in a three-dimensional cavity and in a waveguide with oscillating walls. J. Phys. A. 31, L457–L462 (1998)ADSzbMATHGoogle Scholar
  99. 99.
    Dodonov, V.V.: Resonance excitation and cooling of electromagnetic modes in a cavity with an oscillating wall. Phys. Lett. A. 213, 219–225 (1996)MathSciNetADSzbMATHGoogle Scholar
  100. 100.
    Ruser, M.: Numerical investigation of photon creation in a three-dimensional resonantly vibrating cavity: Transverse electric modes. Phys. Rev. A. 73, 043811 (2006)ADSGoogle Scholar
  101. 101.
    Hacyan, S., Jauregui, R., Soto, F., Villarreal, C.: Spectrum of electromagnetic fluctuations in the Casimir effect. J. Phys. A: Math. Gen. 23, 2401 (1990)MathSciNetADSGoogle Scholar
  102. 102.
    Dodonov, V.V., Dodonov, A.V.: The nonstationary Casimir effect in a cavity with periodical time-dependent conductivity of a semiconductor mirror. J. Phys. A: Math. Gen. 39, 6271–6281 (2006)MathSciNetADSzbMATHGoogle Scholar
  103. 103.
    Uhlmann, M., Plunien, G., Schützhold, R., Soff, G.: Resonant cavity photon creation via the dynamical Casimir effect. Phys.Rev. Lett. 93, 193601 (2004)ADSGoogle Scholar
  104. 104.
    Naylor, W., Matsuki, S., Nishimura, T., Kido, Y.: Dynamical Casimir effect for TE and TM modes in a resonant cavity bisected by a plasma sheet. Phys. Rev. A. 80, 043835 (2009)ADSGoogle Scholar
  105. 105.
    Dodonov, V.V.: Photon distribution in the dynamical Casimir effect with an account of dissipation. Phys. Rev. A. 80, 023814 (2009)ADSGoogle Scholar
  106. 106.
    Lax, M.: Quantum noise. IV. Quantum theory of noise sources. Phys. Rev. 145, 110–129 (1966)ADSGoogle Scholar
  107. 107.
    Mendonça, J.T., Brodin, G., Marklund, M.: Vacuum effects in a vibrating cavity: time refraction, dynamical Casimir effect, and effective Unruh acceleration. Phys. Lett. A. 372, 5621–5624 (2008)ADSzbMATHGoogle Scholar
  108. 108.
    Arbet-Engels, V., Benvenuti, C., Calatroni, S., Darriulat, P., Peck, M.A., Valente, A.M., Van’t Hof, C.A.: Superconducting niobium cavities, a case for the film technology. Nucl. Instrum. Methods Phys. Res. A. 463, 1–8 (2001)ADSGoogle Scholar
  109. 109.
    Agnesi, A., Braggio, C., Bressi, G., Carugno, G., Galeazzi, G., Pirzio, F., Reali, G., Ruoso, G., Zanello, D.: MIR status report: an experiment for the measurement of the dynamical Casimir effect. J. Phys. A: Math. Gen. 41, 164024 (2008)MathSciNetADSGoogle Scholar
  110. 110.
    Segev, E., Abdo, B., Shtempluck, O., Buks, E., Yurke, B.: Prospects of employing superconducting stripline resonators for studying the dynamical Casimir effect experimentally. Phys. Lett. A. 370, 202–206 (2007)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Diego A. R. Dalvit
    • 1
    Email author
  • Paulo A. Maia Neto
    • 2
  • Francisco Diego Mazzitelli
    • 3
    • 4
  1. 1.Theoretical Division MS B213Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Instituto de Física UFRJRio de JaneiroBrazil
  3. 3.Centro Atómico BarilocheComision Nacional de Energía AtómicaBarilocheArgentina
  4. 4.Departamento de Física, FCEyNUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations