Advertisement

Modern Experiments on Atom-Surface Casimir Physics

  • Maarten DeKievietEmail author
  • Ulrich D. Jentschura
  • Grzegorz Łach
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 834)

Abstract

In this chapter we review past and current experimental approaches to measuring the long-range interaction between atoms and surfaces, the so-called Casimir-Polder force. These experiments demonstrate the importance of going beyond the perfect conductor approximation and stipulate the relevance of the Dzyaloshinskii-Lifshitz-Pitaevskii theory. We discuss recent generalizations of that theory, that include higher multipole polarizabilities, and present a list of additional effects, that may become important in future Casimir-Polder experiments. Among the latter, we see great potential for spectroscopic techniques, atom interferometry, and the manipulation of ultra-cold quantum matter (e.g. BEC) near surfaces. We address approaches based on quantum reflection and discuss the atomic beam spin-echo experiment as a particular example. Finally, some of the advantages of Casimir-Polder techniques in comparison to Casimir force measurements between macroscopic bodies are presented.

Keywords

Sodium Atom Perfect Conductor Atom Interferometer Ground State Atom Neon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

G.L. would like to acknowledge his support from the Deutsche Forschungsgemeinschaft (DFG, contract Je285/5–1). U.J. acknowledges support from the National Science Foundation (Grant PHY–8555454) and from the National Institute of Standards and Technology (precision measurement grant).

References

  1. 1.
    Casimir, H.B.G., Polder, D.: The influence of retardation on the London-van der waals forces. Phys. Rev. 73(4), 360–372 (1948)ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    London, F.: Zur Theorie und Systematik der Molekularkräfte. Z. Phys. 63(3–4), 245 (1930)ADSzbMATHGoogle Scholar
  3. 3.
    Verwey. E.J.W., Overbeek. J.T.G., van Nes. K.: (1947) J Phys. Colloid Chem. 51:631Google Scholar
  4. 4.
    Lifshitz. E., Pitaevskii. L.P.: (1956) Landau and Lifshitz course of theoretical physics: Statistical physics part 2. J. Exp.Theor. Phys. 2:(73)Google Scholar
  5. 5.
    Parsegian, V.A.: Van der Waals Forces; A Handbook for Biologists, Chemists, Engineers, and Physicists. Cambridge University Press, New York (2006)Google Scholar
  6. 6.
    Sabisky, E.S., Anderson, C.H: Verification of the Lifshitz theory of the van der Waals potential using liquid-helium films. Phys. Rev. A 7(2), 790–806 (1973)ADSCrossRefGoogle Scholar
  7. 7.
    Shih, A., Parsegian, V.A.: Van der Waals forces between heavy alkali atoms and gold surfaces: Comparison of measured and predicted values. Phys. Rev. A 12(3), 835–841 (1975)ADSCrossRefGoogle Scholar
  8. 8.
    Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P: General theory of van der Waals forces. Adv. Phys. 29, 165 (1961)MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    Sukenik, C.I., Boshier, M.G., Cho, D., Sandoghdar, V., Hinds, E.A.: Measurement of the Casimir-Polder force. Phys. Rev. Lett. 70(5), 560–563 (1993)ADSCrossRefGoogle Scholar
  10. 10.
    Landragin, A., Courtois, J.Y., Labeyrie, G., Vansteenkiste, N., Westbrook, C.I., Aspect, A.: Measurement of the van der Waals force in an atomic mirror. Phys. Rev. Lett. 77(8), 1464–1467 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Shimizu, F.: Specular reflection of very slow metastable neon atoms from a solid surface. Phys. Rev. Lett. 86(6), 987–990 (2001)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    Druzhinina, V., DeKieviet, M.: Experimental observation of quantum reflection far from threshold. Phys. Rev. Lett. 91(19), 193,202 (2003)CrossRefGoogle Scholar
  13. 13.
    DeKieviet, M., Dubbers, D., Schmidt, C., Scholz, D., Spinola, U.:\(^{3}He\) Spin echo: New atomic beam technique for probing phenomena in the neV range. Phys. Rev. Lett. 75(10), 1919–1922 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    Friedrich, H., Jacoby, G., Meister, C.G.: Quantum reflection by Casimir–van der Waals potential tails. Phys. Rev. A 65(3), 032,902 (2002)CrossRefGoogle Scholar
  15. 15.
    Friedrich, H., Trost, J.: Working with WKB waves far from the semiclassical limit. Phys. Rep. 397(6), 359–449 (2004)MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    Perreault, J.D., Cronin, A.D.: Observation of atom wave phase shifts induced by van der Waals atom-surface interactions. Phys. Rev. Lett. 95(13), 133,201–133,204 (2005)CrossRefGoogle Scholar
  17. 17.
    Pasquini, T.A., Shin, Y., Sanner, C., Saba, M., Schirotzek, A., Pritchard, D.E., Ketterle, W.: Quantum reflection from a solid surface at normal incidence. Phys. Rev. Lett. 93(22), 223,201–223,204 (2004)CrossRefGoogle Scholar
  18. 18.
    McGuirk, J.M., Harber, D.M., Obrecht, J.M., Cornell, E.A.: Alkali-metal adsorbate polarization on conducting and insulating surfaces probed with Bose-Einstein condensates. Phys. Rev. A 69(6), 062,905–062,910 (2004)CrossRefGoogle Scholar
  19. 19.
    Lin, Y.J., Teper, I., Chin, C., Vuletić, V.: Impact of the Casimir-Polder potential and Johnson noise on Bose-Einstein condensate stability near surfaces. Phys. Rev. Lett. 92(5), 050–404 (2004)Google Scholar
  20. 20.
    Obrecht, J.M., Wild, R.J., Antezza, M., Pitaevskii, L.P., Stringari, S., Cornell, E.A: Measurement of the temperature dependence of the Casimir-Polder force. Phys. Rev. Lett. 98(6), 063,201–063,204 (2007)CrossRefGoogle Scholar
  21. 21.
    Bender, H., Courteille, P.W., Marzok, C., Zimmermann, C., Slama, S.: Direct measurement of intermediate-range Casimir-Polder potentials. Phys. Rev. Lett. 104(8), 083,201–083,204 (2010)CrossRefGoogle Scholar
  22. 22.
    Saniz, R., Barbiellini, B., Platzman, P.M., Freeman, A.J.: Physisorption of positronium on quartz surfaces. Phys. Rev. Lett. 99(9), 096,101–096,104 (2007)CrossRefGoogle Scholar
  23. 23.
    Łach, G., DeKieviet, M., Jentschura, U.D: Multipole effects in atom-surface interactions: A theoretical study with an application to He–\(\alpha\)-quartz. Phys. Rev. A 81(5), 052–507 (2010)Google Scholar
  24. 24.
    Palik, E.D.: Handbook of Optical Constants of Solids. Academic Press, San Diego (1985)Google Scholar
  25. 25.
    Derevianko, A., Porsev, S.G., Babb, J.F.: Electric dipole polarizabilities at imaginary frequencies for the alkali-metal, alkaline-earth, and inert gas atoms. arXiv:0902.3929v1 p.16 (2009)Google Scholar
  26. 26.
    Marvin, A.M., Toigo, F.: Van der Waals interaction between a point particle and a metallic surface. II. Applications. Phys. Rev. A 25(2), 803–815 (1982)ADSCrossRefGoogle Scholar
  27. 27.
    Milonni, P.W.: The Quantum Vacuum: An Introduction to Quantum Electrodynamics. Academic Press, San Diego (1994)Google Scholar
  28. 28.
    McLachlan, A.D.: Van der Waals forces between an atom and a surface. Mol. Phys. Int. J. Int. Chem. Phys. 7, 381 (1964)Google Scholar
  29. 29.
    Hutson, J.M., Fowler, P., Zaremba E.: Quadrupolar contributions to the atom-surface Van der Waals interaction. Surf. Sci. 175, 775–781 (1986)Google Scholar
  30. 30.
    Lach, G., DeKieviet, M.F.M., Jentschura, U.D.: Noble gas, alkali and alkaline atoms interacting with a gold surface. Int. J. Mod. Phys. A 25(11),2337–2344 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    Babb, J.F., Klimchitskaya, G.L., Mostepanenko, V.M.: Casimir-Polder interaction between an atom and a cavity wall under the influence of real conditions. Phys. Rev. A 70(4), 042,901–042,912 (2004)CrossRefGoogle Scholar
  32. 32.
    Mostepanenko, V.M., Trutnov, N.N.: The Casimir Effect and Its Applications. Clarendon Press, Oxford (1997)Google Scholar
  33. 33.
    Pitaevskii, L.P.: Thermal Lifshitz force between an atom and a conductor with a small density of carriers. Phys. Rev. Lett. 101(16), 163–202 (2008)CrossRefGoogle Scholar
  34. 34.
    Pachucki, K.: Relativistic corrections to the long-range interaction between closed-shell atoms. Phys. Rev. A 72(6), 062–706 (2005)CrossRefGoogle Scholar
  35. 35.
    Meath, W.J., Hirschfelder, J.O.: Long-range (retarded) intermolecular forces. J. Chem. Phys. 44(9), 3210–3215 (1966)ADSCrossRefGoogle Scholar
  36. 36.
    Meath, W.J., Hirschfelder, J.O: Relativistic intermolecular forces, moderately long range. J. Chem. Phys. 44(9), 3197–3209 (1966)ADSCrossRefGoogle Scholar
  37. 37.
    Łach, G., Jeziorski, B., Szalewicz, K.: Radiative corrections to the polarizability of helium. Phys. Rev. Lett. 92(23), 233001 (2004)ADSCrossRefGoogle Scholar
  38. 38.
    Bimonte, G., Klimchitskaya, G.L., Mostepanenko, V.M.: Impact of magnetic properties on atom-wall interactions. Phys. Rev. A 79(4), 042,906–043,912 (2009)Google Scholar
  39. 39.
    Marvin, A.M., Toigo, F.: Van der Waals interaction between a point particle and a metallic surface. I. Theory. Phys. Rev. A 25(2), 782–802 (1982)ADSCrossRefGoogle Scholar
  40. 40.
    Buhmann, S.Y., Dung, H.T., Welsch, D.G.: The van der Waals energy of atomic systems near absorbing and dispersing bodies. J. Opt. B: Quantum and Semiclassical Opt. 6(3), S127 (2004)ADSCrossRefGoogle Scholar
  41. 41.
    Klimchitskaya, G.L., Blagov, E.V., Mostepanenko, V.M.: Casimir-Polder interaction between an atom and a cylinder with application to nanosystems. J. Phys. A Math. Gen. 39(21), 6481 (2006)MathSciNetADSCrossRefzbMATHGoogle Scholar
  42. 42.
    Döbrich B., DeKieviet, M., Gies, H.: Scalar Casimir-Polder forces for uniaxial corrugations. Phys. Rev. D 78(12), 25022 (2008)CrossRefGoogle Scholar
  43. 43.
    Celli, V., Marvin, A., Toigo, F.: Light scattering from rough surfaces. Phys. Rev. B 11(4), 1779–1786 (1975)ADSCrossRefGoogle Scholar
  44. 44.
    Failache, H., Saltiel, S., Fichet, M., Bloch, D., Ducloy, M.: Resonant van der Waals repulsion between excited Cs atoms and sapphire surface. Phys. Rev. Lett. 83(26), 5467–5470 (1999)ADSCrossRefGoogle Scholar
  45. 45.
    Gorza, M.P., Saltiel, S., Failache, H., Ducloy, M.: Quantum theory of van der Waals interactions between excited atoms and birefringent dielectric surfaces. Eur. Phys. J. D 15, 113–126 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    Sandoghdar, V., Sukenik, C.I., Hinds, E.A., Haroche, S.: Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68(23), 3432–3435 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    Anderson, A., Haroche, S., Hinds, E.A., Jhe, W., Meschede, D.: Measuring the van der Waals forces between a Rydberg atom and a metallic surface. Phys. Rev. A 37(9), 3594–3597 (1988)ADSCrossRefGoogle Scholar
  48. 48.
    Failache, H., Saltiel, S., Fichet, M., Bloch, D., Ducloy, M.: Resonant coupling in the van der Waals interaction between an excited alkali atom and a dielectric surface: An experimental study via stepwise selective reflection spectroscopy. Eur. Phys. J. D 23, 237 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    Harber, D.M., Obrecht, J.M., McGuirk, J.M., Cornell, E.A.: Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys. Rev. A 72(3), 033,610–033,615 (2005)CrossRefGoogle Scholar
  50. 50.
    Obrecht, J.M., Wild, R.J., Antezza, M., Pitaevskii, L.P., Stringari, S., Cornell, E.A.: Measurement of the temperature dependence of the Casimir-Polder force. Phys. Rev. Lett. 98(6), 063,201–063,204 (2007)CrossRefGoogle Scholar
  51. 51.
    Derevianko, A., Obreshkov, B., Dzuba, V.A.: Mapping out atom-wall interaction with atomic clocks. Phys. Rev. Lett. 103(13), 133,201–133,204 (2009)CrossRefGoogle Scholar
  52. 52.
    Trenary, M.: Reflection absorption infared spectroscopy and the structure of molecular adsorbates on metal surfaces. Annu. Rev. Phys. Chem. 51(1), 381–403 (2000)ADSCrossRefGoogle Scholar
  53. 53.
    Rusina, G.G., Eremeev, S.V., Echenique, P.M., Benedek, G., Borisova, S.D., Chulkov, E.V.: Vibrations of alkali metal overlayers on metal surfaces. J. Phys. Condens. Matter 20(22), 224007 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    Neubrech, F., Weber, D., Enders, D., Nagao, T., Pucci, A.: Antenna sensing of surface phonon polaritons. J. Phys. Chem. 114, 7299 (2010)Google Scholar
  55. 55.
    Marani, R., Cognet, L., Savalli, V., Westbrook, N., Westbrook, C.I, Aspect, A.: Using atomic interference to probe atom-surface interactions. Phys. Rev. A 61(5), 053–402 (2000)CrossRefGoogle Scholar
  56. 56.
    Lepoutre, S., Jelassi, H., Lonij, V.P.A., Trenec, G., Buchner, M., Cronin, A.D., Vigue, J.: Observation of atom wave phase shifts induced by van der Waals atom-surface interactions. EPL 88, 200002 (2009)CrossRefGoogle Scholar
  57. 57.
    Shimizu, F., Fujita, J.I.: Giant quantum reflection of neon atoms from a ridged silicon surface. J. Phys. Soc. Jpn. 71(1), 5–8 (2002)ADSCrossRefGoogle Scholar
  58. 58.
    Oberst, H., Kouznetsov, D., Shimizu, K., Fujita, J.I., Shimizu, F.: Fresnel diffraction mirror for an atomic wave. Phys. Rev. Lett. 94(1), 013–203 (2005)CrossRefGoogle Scholar
  59. 59.
    Stern, O.: Beugung von molekularstrahlen am gitter einer krystallspaltflche. Naturwissenschaften 17, 391 (1929)ADSCrossRefGoogle Scholar
  60. 60.
    Estermann, L., Stern, O.: Beugung von molekularstrahlen. Z. Phys. 61, 95 (1930)ADSCrossRefGoogle Scholar
  61. 61.
    Benedek, G., Valbusa U.: Dynamics of Gas-Surface Interaction.Vol. 21. Springer Series in Chemical Physics, Berlin (1982)CrossRefGoogle Scholar
  62. 62.
    Scoles, G.: Atomic and Molecular Beam Methods. Oxford University Press, New York, vol. I and II. (1988)Google Scholar
  63. 63.
    Girard, C., Humbert, J.: Quadrupolar and non-local effects in the physisorption of rare-gas atoms on metal surfaces. Chem. Phys. 97, 87–94 (1985)ADSCrossRefGoogle Scholar
  64. 64.
    Vidali, G., Cole, M.W., Klein, J.R.: Shape of physical adsorption potentials. Phys. Rev. B 28(6), 3064–3073 (1983)ADSCrossRefGoogle Scholar
  65. 65.
    DeKieviet, M., Dubbers, D., Klein, M., Pieles, U., Skrzipczyk, M.: Surface science using molecular beam spin echo. Surf. Sci. 377(379), 1112–1117 (1997)ADSCrossRefGoogle Scholar
  66. 66.
    Stöferle, T., Warring, U., Lach, G., Jentschura, U.D., DeKieviet, M.F.M.: Quantum and classical reflection of He from single crystal gold. Manuscript in preparation (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Maarten DeKieviet
    • 1
    Email author
  • Ulrich D. Jentschura
    • 2
  • Grzegorz Łach
    • 1
  1. 1.Physikalisches Institut der Universität HeidelbergHeidelbergGermany
  2. 2.Department of PhysicsMissouri University of Science and TechnologyRollaUSA

Personalised recommendations