Advertisement

Fluctuation-Induced Forces Between Atoms and Surfaces: The Casimir–Polder Interaction

  • Francesco IntravaiaEmail author
  • Carsten Henkel
  • Mauro Antezza
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 834)

Abstract

Electromagnetic fluctuation-induced forces between atoms and surfaces are generally known as Casimir–Polder interactions. The exact knowledge of these forces is rapidly becoming important in modern experimental set-ups and for technological applications. Recent theoretical and experimental investigations have shown that such an interaction is tunable in strength and sign, opening new perspectives to investigate aspects of quantum field theory and condensed-matter physics. In this chapter we review the theory of fluctuation-induced interactions between atoms and a surface, paying particular attention to the physical characterization of the system. We also survey some recent developments concerning the role of temperature, situations out of thermal equilibrium, and measurements involving ultra-cold atoms.

Keywords

Dielectric Function Surface Interaction Atomic Beam Polarizability Tensor Green Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to thank H. Haakh for fruitful discussions and comments, and R. Behunin for a critical reading. F.I. and C.H. acknowledge support from the Deutsche Forschungsgemeinschaft, the Humboldt foundation, and the European Science Foundation.

References

  1. 1.
    Diedrich, F., Bergquist, J.C., Itano, M.W., Wineland, D.J.: Laser cooling to the zero-point energy of motion. Phys. Rev. Lett. 62, 403 (1989)ADSCrossRefGoogle Scholar
  2. 2.
    Meekhof, D.M., Monroe, C., King, B.E., Itano, W.M., Wineland, D.J: Generation of nonclassical motional states of a trapped ion. Phys. Rev. Lett. 76, 1796 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Pitaevskii, L.P., Stringari, S.: Bose–Einstein Condensation, 116 of International Series of Monographs on Physics. Clarendon Press, Oxford (2003)Google Scholar
  4. 4.
    Antezza, M., Pitaevskii, L.P., Stringari, S.: Effect of the Casimir–Polder force on the collective oscillations of a trapped Bose–Einstein condensate. Phys. Rev. A. 70, 053619 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    Obrecht, J.M., Wild, R.J., Antezza, M., Pitaevskii, L.P., Stringari, S., Cornell, E.A.: Measurement of the temperature dependence of the Casimir–Polder force. Phys. Rev. Lett. 98, 063201 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    Carusotto, I., Pitaevskii, L., Stringari, S., Modugno, G., Inguscio, M.: Sensitive measurement of forces at micron scale using bloch oscillations of ultracold atoms. Phys. Rev. Lett. 95, 093202 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    Wolf, P., Lemonde, P., Lambrecht, A., Bize, S., Landragin, A., Clairon, A.: From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A. 75, 063608 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    Sorrentino, F., Alberti, A., Ferrari, G., Ivanov, V.V., Poli, N., Schioppo, M., Tino, G.M.: Quantum sensor for atom–surface interactions below \(10\,\upmu{\rm m}\). Phys. Rev. A. 79, 013409 (2009)ADSCrossRefGoogle Scholar
  9. 9.
    Onofrio, R.: Casimir forces and non-Newtonian gravitation. New J. Phys. 8, 237 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    Folman, R., Krüger, P., Schmiedmayer, J., Denschlag, J.H., Henkel, C.: Microscopic atom optics: from wires to an atom chip. Adv. At. Mol. Opt. Phys. 48, 263 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    Fortágh, J., Zimmermann, C.: Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235 (2007)ADSCrossRefGoogle Scholar
  12. 12.
    Reichel, J., Hänsel, W., Hänsch, T.W.: Atomic micromanipulation with magnetic surface traps. Phys. Rev. Lett. 83, 3398 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    Folman, R., Krüger, P., Cassettari, D., Hessmo, B., Maier, T., Schmiedmayer, J.: Controlling cold atoms using nanofabricated surfaces: atom chips. Phys. Rev. Lett. 84, 4749 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Ott, H., Fortagh, J., Schlotterbeck, G., Grossmann, A., Zimmermann, C.: Bose–Einstein condensation in a surface microtrap. Phys. Rev. Lett. 87, 230401 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    Roux, C., Emmert, A., Lupascu, A., Nirrengarten, T., Nogues, G., Brune, M., Raimond, J.-M., Haroche, S.: Bose–Einstein condensation on a superconducting atom chip. Europhys. Lett. 81(56004), 6 (2008)Google Scholar
  16. 16.
    Cano, D., Kasch, B., Hattermann, H., Kleiner, R., Zimmermann, C., Koelle, D., Fortágh, J.: Meissner effect in superconducting microtraps. Phys. Rev. Lett. 101, 183006 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    Müller, T., Zhang, B., Fermani, R., Chan, K.S., Wang, Z.W., Zhang C.B., Lim M.J., Dumke, R.: Trapping of ultra-cold atoms with the magnetic field of vortices in a thin-film superconducting micro-structure. New J. Phys. 12, 043016 (2010)CrossRefGoogle Scholar
  18. 18.
    Parsegian, V.A.: van der Waals Forces—A Handbook for Biologists, Chemists, Engineers, and Physicists. Cambridge University Press, New York (2006)Google Scholar
  19. 19.
    Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics (Part 2), 9 of Landau and Lifshitz Course of Theoretical Physics. 2nd ed. Pergamon, Oxford (1980)Google Scholar
  20. 20.
    Margenau, H.: van der Waals forces. Rev. Mod. Phys. 11, 1 (1939)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    London, F.: Zur Theorie und Systematik der Molekularkräfte. Z. Physik. 63, 245 (1930)ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    Verweey, E., Overbeek, J.: Theory of the Stability of Lyophobic Colloids. Elsevier Science Publishers, Amsterdam (1948)Google Scholar
  23. 23.
    Casimir, H.B., Polder, D.: The Influence of retardation on the London-van der Waals forces. Phys. Rev. 73, 360 (1948)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P.: General theory of van der Waals’ forces. Sov. Physics Usp. 4, 153 (1961)ADSCrossRefGoogle Scholar
  25. 25.
    Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)Google Scholar
  26. 26.
    Linder, B.: van der Waals interaction potential between polar molecules. Pair Potential and (Nonadditive) Triple Potential. J. Chem. Phys. 40, 2003 (1964)ADSCrossRefGoogle Scholar
  27. 27.
    Haakh, H., Intravaia, F., Henkel, C., Spagnolo, S., Passante, R., Power, B., Sols, F.: Temperature dependence of the magnetic Casimir–Polder interaction. Phys. Rev. A 80, 062905 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    Ellingsen, S.A., Buhmann, S.Y., Scheel, S.: Temperature-invariant Casimir–Polder forces despite large thermal photon numbers. Phys. Rev. Lett. 104, 223003 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Vacuum fluctuations and radiation reaction: identification of their respective contributions. J. Physique (France) 43, 1617 (1982)CrossRefGoogle Scholar
  30. 30.
    Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: Dynamics of a small system coupled to a reservoir: reservoir fluctuations and self-reaction. J. Physique (France) 45, 637 (1984)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Callen, H.B., Welton, T.A.: Irreversibility and generalized noise. Phys. Rev. 83, 34 (1951)MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 32.
    Meschede, D., Jhe, W., Hinds, E.A.: Radiative properties of atoms near a conducting plane: an old problem in a new light. Phys. Rev. A 41, 1587 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Henkel. C., Joulain. K., Mulet.J.-P., Greffet.J.-J.: Radiation forces on small particles in thermal near fields. J. Opt. A: Pure Appl. Opt. 4, S109 (2002), special issue “Electromagnetic Optics” (EOS Topical Meeting, Paris 26–30 August 2001)Google Scholar
  34. 34.
    Novotny, L., Henkel, C.: Van der Waals versus optical interaction between metal nanoparticles. Opt. Lett. 33, 1029 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    McLachlan, A.D.: Retarded dispersion forces between molecules. Proc. R. Soc. London A. 271, 387 (1963)MathSciNetADSCrossRefGoogle Scholar
  36. 36.
    Wylie, J.M., Sipe, J.E.: Quantum electrodynamics near an interface. II. Phys. Rev. A. 32, 2030 (1985)ADSCrossRefGoogle Scholar
  37. 37.
    Milonni, P.W.: The Quantum Vacuum. Academic Press Inc., San Diego (1994)Google Scholar
  38. 38.
    Sols, F., Flores, F.: Dynamic interactions between a charge or an atom and a metal surface. Solid State Commun. 42, 687 (1982)ADSCrossRefGoogle Scholar
  39. 39.
    Buhmann, S.Y., Welsch, D.-G.: Dispersion forces in macroscopic quantum electrodynamics. Progr. Quantum Electr. 31, 51 (2007)ADSCrossRefGoogle Scholar
  40. 40.
    Bezerra, V.B., Klimchitskaya, G.L., Mostepanenko, V.M., Romero, C.: Lifshitz theory of atom-wall interaction with applications to quantum reflection. Phys. Rev. A. 78, 042901 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    Bimonte, G.: Bohr-van Leeuwen theorem and the thermal Casimir effect for conductors. Phys. Rev. A. 79, 042107 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Skagerstam, B.-S., Rekdal, P.K., Vaskinn, A.H.: Theory of Casimir–Polder forces. Phys. Rev. A. 80, 022902 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Jackson, J.D.: Classical Electrodynamics. John Wiley and Sons Inc, New York, Berlin u.a., (1975) XIX, 938 SzbMATHGoogle Scholar
  44. 44.
    Huttner, B., Barnett, S.M.: Dispersion and loss in a Hopfield dielectric. Europhys. Lett. 18, 487 (1992)ADSCrossRefGoogle Scholar
  45. 45.
    Barnett, S.M., Huttner, B., Loudon, R., Matloob, R.: Decay of excited atoms in absorbing dielectrics. J. Phys. B: Atom. Mol. Opt. Phys. 29, 3763 (1996)ADSCrossRefGoogle Scholar
  46. 46.
    Agarwal, G.S.: Quantum electrodynamics in the presence of dielectrics and conductors. I. electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A. 11, 230 (1975)ADSCrossRefGoogle Scholar
  47. 47.
    Eckhardt, W.: First and second fluctuation-dissipation-theorem in electromagnetic fluctuation theory. Opt. Commun. 41, 305 (1982)ADSCrossRefGoogle Scholar
  48. 48.
    Eckhardt, W.: Macroscopic theory of electromagnetic fluctuations and stationary radiative heat transfer. Phys. Rev. A. 29, 1991 (1984)MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    Rytov, S.M.: Theory of Electrical Fluctuations and Thermal Radiation. Publishing House, Academy of Sciences USSR (1953)Google Scholar
  50. 50.
    Matsubara, T.: A New approach to quantum statistical mechanics. Prog. Theor. Phys. 14, 351 (1955)MathSciNetADSzbMATHCrossRefGoogle Scholar
  51. 51.
    Håkanson, U., Agio, M., Kühn, S., Rogobete, L., Kalkbrenner, T., Sandoghdar, V.: Coupling of plasmonic nanoparticles to their environments in the context of van der Waals—Casimir interactions. Phys. Rev. B. 77, 155408 (2008)ADSCrossRefGoogle Scholar
  52. 52.
    Klimov, V., Lambrecht, A.: Plasmonic nature of van der Waals forces between nanoparticles. Plasmonics. 4, 31 (2009)CrossRefGoogle Scholar
  53. 53.
    Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908)CrossRefGoogle Scholar
  54. 54.
    Born, M., Wolf, E.: Principles of Optics. seventh ed. Cambridge University Press, Cambridge. (1999)Google Scholar
  55. 55.
    Feinberg, G., Sucher, J.: General form of the Van der Waals interaction: a model-independent approach. Phys. Rev. A. 2, 2395 (1970)ADSCrossRefGoogle Scholar
  56. 56.
    Babb, J.F.: Long-range atom–surface interactions for cold atoms. J. Phys. Conf. Series. 19, 1 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    Renne, M.J.: Microscopic theory of retarded van der Waals forces between macroscopic dielectric bodies. Physica. 56, 125 (1971)ADSCrossRefGoogle Scholar
  58. 58.
    Renne, M.J.: Retarded van der Waals interaction in a system of harmonic oscillators. Physica 53, 193 (1971)ADSCrossRefGoogle Scholar
  59. 59.
    Davies, B.: Calculation of van der Waals forces from dispersion relations. Chem. Phys. Lett. 16, 388 (1972)ADSCrossRefGoogle Scholar
  60. 60.
    Mahanty, J., Ninham, B.W.: Dispersion forces between oscillators: a semi-classical treatment. J. Phys. A: Gen. Phys. 5, 1447 (1972)ADSCrossRefGoogle Scholar
  61. 61.
    Mahanty, J., Ninham, B.W.: Boundary effects on the dispersion force between oscillators. J. Phys. A: Math. Nucl. Gen. 6, 1140 (1973)ADSCrossRefGoogle Scholar
  62. 62.
    Ford, G.W., Lewis, J.T., O’Connell, R.F.: Quantum oscillator in a blackbody radiation field. Phys. Rev. Lett. 55, 2273 (1985)MathSciNetADSCrossRefGoogle Scholar
  63. 63.
    Ford, L.H.: Spectrum of the Casimir effect. Phys. Rev. D 38, 528 (1988)ADSCrossRefGoogle Scholar
  64. 64.
    Agarwal, G.S.: Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries. Phys. Rev. A 11, 230 (1975)ADSCrossRefGoogle Scholar
  65. 65.
    Wylie, J.M., Sipe, J.E.: Quantum electrodynamics near an interface. Phys. Rev. A 30, 1185 (1984)CrossRefGoogle Scholar
  66. 66.
    Sondheimer, E.H.: The mean free path of electrons in metals. Adv. Phys. 1, 1 (1952)ADSCrossRefGoogle Scholar
  67. 67.
    Henkel, C., Pötting, S., Wilkens, M.: Loss and heating of particles in small and noisy traps. Appl. Phys. B 69, 379 (1999)ADSCrossRefGoogle Scholar
  68. 68.
    Kittel, C.: Introduction to Solid State Physics. 7th ed. John Wiley and Son Inc., New York (1996)Google Scholar
  69. 69.
    Henkel, C.: Magnetostatic field noise near metallic surfaces. Eur. Phys. J. D 35, 59 (2005), topical issue on Atom chips: manipulating atoms and molecules with microfabricated structuresGoogle Scholar
  70. 70.
    Schrieffer, J.R.: (1999) Theory of Superconductivity (Perseus Books, Reading MA)Google Scholar
  71. 71.
    Joulain, K., Carminati, R., Mulet, J.-P., Greffet, J.-J.: Definition and measurement of the local density of electromagnetic states close to an interface. Phys. Rev. B 68, 245405 (2003)ADSCrossRefGoogle Scholar
  72. 72.
    Philbin, T.G., Leonhardt, U.: No quantum friction between uniformly moving plates. New J. Phys. 11(033035), 18 (2009)Google Scholar
  73. 73.
    Pendry, J.B.: Quantum friction—fact or fiction? New J. Phys. 12, 033028 (2010)ADSCrossRefGoogle Scholar
  74. 74.
    Leonhardt, U.: Comment on quantum friction—fact or fiction? New J. Phys. 12, 068001 (2010)ADSCrossRefGoogle Scholar
  75. 75.
    McLachlan, A.D.: Retarded dispersion forces between molecules. Proc. R. Soc. London A 271, 387 (1963)MathSciNetADSCrossRefGoogle Scholar
  76. 76.
    Gorza, M.P., Ducloy, M.: Van der Waals interactions between atoms and dispersive surfaces at finite temperature. Eur. Phys. J. D 40, 343 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    Einstein, A.: Zur Quantentheorie der Strahlung. Physik. Zeitschr. 18, 121 (1917)ADSGoogle Scholar
  78. 78.
    Wilkens, M.: Spurious velocity dependence of free-space spontaneous emission. Phys. Rev. A 47, 671 (1993)ADSCrossRefGoogle Scholar
  79. 79.
    Wilkens, M.: Significance of Röntgen current in quantum optics: spontaneous emission of moving atoms. Phys. Rev. A 49, 570 (1994)ADSCrossRefGoogle Scholar
  80. 80.
    Wilkens, M.: Quantum phase of a moving dipole. Phys. Rev. Lett. 72, 5 (1994)ADSCrossRefGoogle Scholar
  81. 81.
    Scheel, S., Buhmann, S.Y.: Casimir–Polder forces on moving atoms. Phys. Rev. A 80, 042902 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    Mkrtchian, V., Parsegian, V.A., Podgornik, R., Saslow, W.M.: Universal Thermal Radiation Drag on Neutral Objects. Phys. Rev. Lett. 91, 220801 (2003)ADSCrossRefGoogle Scholar
  83. 83.
    Zurita-Sánchez, J.R., Greffet, J.-J., Novotny, L.: Friction forces arising from fluctuating thermal fields. Phys. Rev. A 69, 022902 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    Kleppner, D.: Rereading Einstein on Radiation. Physics Today (Feb 2005) p. 30Google Scholar
  85. 85.
    Schaich, W.L., Harris, J.: Dynamic corrections to van der Waals potentials. J. Phys. F: Metal Phys. 11, 65 (1981)ADSCrossRefGoogle Scholar
  86. 86.
    Dedkov, G.V., Kyasov, A.A.: Tangential force and heating rate of a neutral relativistic particle mediated by equilibrium background radiation. Nucl. Instr. Meth. Phys. Res. B 268, 599 (2010)ADSCrossRefGoogle Scholar
  87. 87.
    Volokitin, A.I., Persson, B.N.J.: Near-field radiative heat transfer and noncontact friction. Rev. Mod. Phys. 79, 1291 (2007)ADSCrossRefGoogle Scholar
  88. 88.
    Teodorovich, E.V.: On the Contribution of Macroscopic van der Waals Interactions to frictional force. Proc. R. Soc. London A 362, 71 (1978)ADSCrossRefGoogle Scholar
  89. 89.
    Rytov, S.M., Kravtsov, Y.A., Tatarskii, V.I.: Elements of Random Fields, 3 of Principles of Statistical Radiophysics. (Springer, Berlin) (1989)CrossRefGoogle Scholar
  90. 90.
    Knöll, L., Scheel, S., Welsch, D.-G.: In: Peřina, J. (ed) Coherence and statistics of photons and atoms, John Wiley & Sons. Inc., New York (2001)Google Scholar
  91. 91.
    Barnett. S.M.: (1997) . In: Quantum fluctuations. Les Houches, Session LXIII, 1995, edited by S. Reynaud, E. Giacobino, and J. Zinn-Justin (Elsevier, Amsterdam) 137–179Google Scholar
  92. 92.
    Henry, C.H., Kazarinov, R.F.: Quantum noise in photonics. Rev. Mod. Phys. 68, 801 (1996)ADSCrossRefGoogle Scholar
  93. 93.
    Joulain, K., Mulet, J.-P., Marquier, F., Carminati, R., Greffet, J.-J.: Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59 (2005)ADSCrossRefGoogle Scholar
  94. 94.
    Antezza, M., Pitaevskii, L.P., Stringari, S.: New asymptotic behaviour of the surface-atom force out of thermal equilibrium. Phys. Rev. Lett. 95, 113202 (2005)ADSCrossRefGoogle Scholar
  95. 95.
    Savasta, S., Stefano, O.D., Girlanda, R.: Light quantization for arbitrary scattering systems. Phys. Rev. A 65, 043801 (2002)ADSCrossRefGoogle Scholar
  96. 96.
    Antezza, M., Pitaevskii, L.P., Stringari, S., Svetovoy, V.B.: Casimir–Lifshitz force out of thermal equilibrium. Phys. Rev. A 77, 022901 (2008)ADSCrossRefGoogle Scholar
  97. 97.
    Chaumet, P.C., Nieto-Vesperinas, M.: Time-averaged total force on a dipolar sphere in an electromagnetic field. Opt. Lett. 25, 1065 (2000)ADSCrossRefGoogle Scholar
  98. 98.
    Arias-González, J.R., Nieto-Vesperinas, M.: Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. J. Opt. Soc. Am. A 20, 1201 (2003)ADSCrossRefGoogle Scholar
  99. 99.
    Dalibard, J., Cohen-Tannoudji, C.: Dressed-atom approach to atomic motion in laser light: the dipole force revisited. J. Opt. Soc. Am. B 2, 1707 (1985)ADSCrossRefGoogle Scholar
  100. 100.
    Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Atom–photon interactions. Wiley, New York (1998)CrossRefGoogle Scholar
  101. 101.
    Draine, B.: The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848 (1988)ADSCrossRefGoogle Scholar
  102. 102.
    Milonni, P.W., Boyd, R.W.: Momentum of Light in a Dielectric Medium. Adv. Opt. Photon. 2, 519 (2010)CrossRefGoogle Scholar
  103. 103.
    Antezza, M.: Surface–atom force out of thermal equilibrium and its effect on ultra-cold atoms force out of thermal equilibrium and its effect on ultra-cold atoms. J. Phys. A: Math. Theor. 39, 6117 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  104. 104.
    Pitaevskii, L.P.: Long-distance behaviour of the surface-atom Casimir–Polder force out of thermal equilibrium. J. Phys. A: Math. Gen. 39, 6665 (2006)MathSciNetADSzbMATHCrossRefGoogle Scholar
  105. 105.
    Antezza, M., Pitaevskii, L.P., Stringari, S., Svetovoy, V.B.: Casimir–Lifshitz force out of thermal equilibrium and asymptotic non-additivity. Phys. Rev. Lett. 97, 223203 (2006)ADSCrossRefGoogle Scholar
  106. 106.
    Sandoghdar, V., Sukenik, C.I., Hinds, E.A., Haroche, S.: Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. Phys. Rev. Lett. 68, 3432 (1992)ADSCrossRefGoogle Scholar
  107. 107.
    Sukenik, C.I., Boshier, M.G., Cho, D., Sandoghdar, V., Hinds, E.A.: Measurement of the Casimir–Polder force. Phys. Rev. Lett. 70, 560 (1993)ADSCrossRefGoogle Scholar
  108. 108.
    Shimizu, F.: Specular reflection of very slow metastable neon atoms from a solid surface. Phys. Rev. Lett. 86, 987 (2001)ADSCrossRefGoogle Scholar
  109. 109.
    Druzhinina, V., DeKieviet, M.: Experimental Observation of Quantum Reflection far from Threshold. Phys. Rev. Lett. 91, 193202 (2003)ADSCrossRefGoogle Scholar
  110. 110.
    Lin, Y.-J., Teper, I., Chin, C., Vuletić, V.: Impact of Casimir–Polder potential and Johnson noise on Bose–Einstein condensate stability near surfaces. Phys. Rev. Lett. 92, 050404 (2004)ADSCrossRefGoogle Scholar
  111. 111.
    Raskin, D., Kusch, P.: Interaction between a Neutral Atomic or Molecular Beam and a Conducting Surface. Phys. Rev. 179, 712 (1969)ADSCrossRefGoogle Scholar
  112. 112.
    Shih, A., Raskin, D., Kusch, P.:Investigation of the interaction potential between a neutral molecule and a conducting surface. Phys. Rev. A 9, 652 (1974)ADSCrossRefGoogle Scholar
  113. 113.
    Shih, A., Parsegian, V.A.: Van der Waals forces between heavy alkali atoms and gold surfaces: Comparison of measured and predicted values. Phys. Rev. A 12, 835 (1975)ADSCrossRefGoogle Scholar
  114. 114.
    Anderson, A., Haroche, S., Hinds, E.A., Jhe, W., Meschede, D., Moi, L.: Reflection of thermal Cs atoms grazing a polished glass surface. Phys. Rev. A 34, 3513 (1986)ADSCrossRefGoogle Scholar
  115. 115.
    Landragin, A., Courtois, J.-Y., Labeyrie, G., Vansteenkiste, N., Westbrook C.I., Aspect, A.: Measurement of the van der Waals force in an atomic mirror. Phys. Rev. Lett. 77, 1464 (1996)ADSCrossRefGoogle Scholar
  116. 116.
    Grisenti, R.E., Schöllkopf, W., Toennies, J.P., Hegerfeldt ,G.C., Köhler, T.: Determination of atom–surface van der Waals potentials from transmission-grating diffraction intensities. Phys. Rev. Lett. 83, 1755 (1999)ADSCrossRefGoogle Scholar
  117. 117.
    Brühl, R., Fouquet, P., Grisenti R.E., Toennies, J.P., Hegerfeldt, G.C., Kohler, T., Stoll, M., Walter, C.: The van der Waals potential between metastable atoms and solid surfaces: novel diffraction experiments vs. theory. Europhys. Lett. 59, 357 (2002)ADSCrossRefGoogle Scholar
  118. 118.
    Fichet, M., Dutier, G., Yarovitsky, A., Todorov, P., Hamdi, I., Maurin, I., Saltiel, S., Sarkisyan, D., Gorza, M.-P., Bloch, D. Ducloy, M.: Exploring the van der Waals atom–surface attraction in the nanometric range. Europhys. Lett. 77, 54001 (2007)ADSCrossRefGoogle Scholar
  119. 119.
    Côté, R., Segev, B., Raizen, M.G.: Retardation effects on quantum reflection from an evanescent-wave atomic mirror. Phys. Rev. A 58, 3999 (1998)ADSCrossRefGoogle Scholar
  120. 120.
    Friedrich, H., Jacoby, G., Meister, C.G.: Quantum reflection by Casimir–van der Waals potential tails. Phys. Rev. A 65, 032902 (2002)ADSCrossRefGoogle Scholar
  121. 121.
    Bender, H., Courteille, P.W., Marzok, C., Zimmermann, C., Slama, S.: Direct measurement of intermediate-range Casimir–Polder potentials. Phys. Rev. Lett. 104, 083201 (2010)ADSCrossRefGoogle Scholar
  122. 122.
    Harber, D.M., Obrecht, J.M., McGuirk, J.M., Cornell, E.A.: Measurement of the Casimir–Polder force through center-of-mass oscillations of a Bose–Einstein condensate. Phys. Rev. A 72, 033610 (2005)ADSCrossRefGoogle Scholar
  123. 123.
    Antezza, M., Pitaevskii, L.P., Stringari, S.: Effect of the Casimir–Polder force on the collective oscillations of a trapped Bose–Einstein condensate. Phys. Rev. A 70, 053619 (2004)ADSCrossRefGoogle Scholar
  124. 124.
    Dalvit, D.A.R., Lamoreaux, S.K.: Contribution of drifting carriers to the Casimir–Lifshitz and Casimir–Polder interactions with semiconductor materials. Phys. Rev. Lett. 101, 163203 (2008)ADSCrossRefGoogle Scholar
  125. 125.
    Messina, R., Dalvit, D.A.R., Neto, P.A.M., Lambrecht, A., Reynaud, S.: Dispersive interactions between atoms and nonplanar surfaces. Phys. Rev. A 80, 022119 (2009)ADSCrossRefGoogle Scholar
  126. 126.
    M. Antezza, Ph.D. thesis, University of Trento, 2006Google Scholar
  127. 127.
    Klimchitskaya, G.L., Mostepanenko, V.M.: Conductivity of dielectric and thermal atom—wall interaction. J. Phys. A. Math. Gen. 41, 312002(F) (2008)ADSGoogle Scholar
  128. 128.
    Brown-Hayes, M., Brownell, J.H., Dalvit, D.A.R., Kim, W.J., Lambrecht, A., Lombardo, F.C., Mazzitelli, F.D., Middleman, S.M., Nesvizhevsky, V.V., Onofrio, R., Reynaud, S.: Thermal and dissipative effects in Casimir physics. J. Phys. A. Math. Gen. 39, 6195 (2006)MathSciNetADSCrossRefGoogle Scholar
  129. 129.
    Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009)ADSCrossRefGoogle Scholar
  130. 130.
    Milton, K.A.: Recent developments in the Casimir effect. J. Phys. Conf. Series 161, 012001 (2009)ADSCrossRefGoogle Scholar
  131. 131.
    Pitaevskii, L.P.: Thermal Lifshitz Force between Atom and Conductor with Small Density of Carriers. Phys. Rev. Lett. 101, 163202 (2008)ADSCrossRefGoogle Scholar
  132. 132.
    Grynberg, G., Robilliard, C.: Cold atoms in dissipative optical lattices. Phys. Rep. 355, 335 (2001)ADSCrossRefGoogle Scholar
  133. 133.
    Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  134. 134.
    Derevianko, A., Obreshkov, B., Dzuba, V.A.: Mapping Out Atom-Wall Interaction with Atomic Clocks. Phys. Rev. Lett. 103, 133201 (2009)ADSCrossRefGoogle Scholar
  135. 135.
    Moreno, G.A., Dalvit, D.A.R., Calzetta, E.: Bragg spectroscopy for measuring Casimir–Polder interactions with Bose–Einstein condensates above corrugated surfaces. New J. Phys. 12, 033009 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Francesco Intravaia
    • 1
    Email author
  • Carsten Henkel
    • 2
  • Mauro Antezza
    • 3
  1. 1.Theoretical Division, MS B213Los Alamos National LaboratoryLos AlamosUSA
  2. 2.Institut für Physik und AstronomieUniversität PotsdamPotsdamGermany
  3. 3.Laboratoire Kastler BrosselEcole Normale Supérieure, CNRS and UPMCParisFrance

Personalised recommendations