Advertisement

A Query-Friendly Compression for GML Documents

  • Qingting Wei
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6637)

Abstract

Geography Markup Language (GML) has become a standard encoding format for exchanging geographic data among heterogeneous Geographic Information System (GIS) applications. Whereas, the iteration of document structure and the textual expression of geographic data often cause the huge size of GML documents. In this paper, a query-friendly GML compression method is proposed, where the GML documents in SAX document parsing are transformed to a compact representation encompassing an event dictionary, the events hierarchy in balanced parentheses, a binary event wavelet tree and the document content blocks before compressed using a general compression utility. The proposed compression method supports direct path queries and spatial queries over the compressed files without the requirement of a full decompression. The compression model, the query resolution process and the compression algorithm are detailed in this paper, though the presentation is a preliminary investigation and it remains to carry out experiments to validate the proposed compression method on real GML documents.

Keywords

GML compression query model algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geospatial information – Geography Markup Language (GML). ISO 19136:2007 (2007)Google Scholar
  2. 2.
    Huffman, D.A.: A Method for the Construction of Minimum-Redundancy Codes. Proceedings of the IRE 40(9), 1098–1101 (1952)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23, 337–343 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Communications of the ACM 30(6), 520–540 (1987)CrossRefGoogle Scholar
  5. 5.
    Cleary, J.G., Witten, I.H.: Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications 32(4), 396–402 (1984)CrossRefGoogle Scholar
  6. 6.
    Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm. Technical report SRC-RR-124, Hewlett-Packard Company (1994)Google Scholar
  7. 7.
    Hartmut, L., Suciu, D.: XMill: an efficient compressor for XML data. In: ACM SIGMOD 2000, pp. 153–164. ACM Press, New York (2000)Google Scholar
  8. 8.
    Girardot, M., Sundaresan, N.: Millau: an encoding format for efficient representation and exchange of XML over the Web. Computer Networks 33(1-6), 747–765 (2000)CrossRefGoogle Scholar
  9. 9.
    Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: DCC 2001, pp. 163–172. IEEE Press, New York (2001)Google Scholar
  10. 10.
    League, C., Eng, K.: Type-based compression of XML data. In: DCC 2007, pp. 272–282. IEEE Press, New York (2007)Google Scholar
  11. 11.
    Skibiński, P., Grabowski, S., Swacha, J.: Effective asymmetric XML compression. Software: Practice and Experience 38(10), 1024–1047 (2008)Google Scholar
  12. 12.
    Tolani, P.M., Haritsa, J.R.: XGrind: a query-friendly XML compressor. In: ICDE 2002, pp. 225–234. IEEE Press, New York (2002)Google Scholar
  13. 13.
    Min, J., Park, M., Chung, C.: XPress: a queriable compression for XML data. In: ACM SIGMOD 2003, pp. 122–133. IEEE Press, New York (2003)Google Scholar
  14. 14.
    Arion, A., Bonifati, A., Costa, G., D’Aguanno, S., Manolescu, I., Pugliese, A.: XQueC: Pushing queries to compressed XML data. In: VLDB 2003, pp. 1065–1068 (2003)Google Scholar
  15. 15.
    Lam, W.Y., Ng, W., Wood, P.T., Levene, M.: XCQ: A queriable XML compression system. Knowledge and Information Systems 10(4), 421–452 (2006)CrossRefGoogle Scholar
  16. 16.
    Guan, J., Zhou, S.: GPress: Towards effective GML documents compresssion. In: ICDE 2007, pp. 1473–1474. IEEE Press, New York (2007)Google Scholar
  17. 17.
    Guan, J., Zhou, S., Chen, Y.: An effective GML documents compressor. IEICE Transactions on Information and Systems E91-D(7), 1982–1990 (2008)Google Scholar
  18. 18.
    Wei, Q., Guan, J.: A GML Compression Approach Based on On-line Semantic Clustering. In: Geoinformatics 2010, pp. 1–7. IEEE Press, New York (2010)Google Scholar
  19. 19.
    Dai, Q., Zhang, S., Wang, Z.: GQComp: A Query-Supported Compression Technique for GML. In: 9th IEEE International Conference on Computer and Information Technology, pp. 311–317. IEEE Press, New York (2009)Google Scholar
  20. 20.
    Vatsavai, R.R.: GML-QL: A spatial query language specification for GML. Department of Computer Science and Engineering, University of Minnesota, http://www.cobblestoneconcepts.com/ucgis2summer2002/vatsavai/vatsavai.htm
  21. 21.
    Boucelma, O., Colonna, F.M.: GQuery: a query language for GML. In: 24th Urban Data Management Symposium (2004)Google Scholar
  22. 22.
    Jihong, G.: GQL: Extending XQuery to query GML documents. Geo-spatial Information Science 9(2), 118–126 (2006)CrossRefGoogle Scholar
  23. 23.
    XQuery 1.0: An XML query language, http://www.w3.org/XML/Query/
  24. 24.
    GZip 1.2.4, http://www.gzip.org
  25. 25.
    Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In: SODA 2003 (2003)Google Scholar
  26. 26.
    Ferragina, P., Giancarlo, R., Manzini, G.: The myriad virtues of wavelet trees. Information and Computation 207(8), 849–866 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Qingting Wei
    • 1
    • 2
  1. 1.Dept. of Computer Science and TechnologyTongji UniversityShanghaiChina
  2. 2.School of SoftwareNanchang UniversityNanchangChina

Personalised recommendations