Advertisement

A GML Documents Stream Compressor

  • Yinan Yu
  • Yuzhen Li
  • Shuigeng Zhou
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6637)

Abstract

GML has become the standard format for geographical data transfer, exchange and storage. Usually, in GML documents there are many verbose tags and a large amount of coordinate data, which makes them be of extremely large volume. Thus, it is necessary to compress these documents to reduce storage and transmission cost. GML data is often stored and transferred in the form of multiple documents. Although some GML compressors have been developed recently, all of them can process only a single GML document at a time. In this paper, we propose a stream compressor for GML documents, called GDScomp, which can compress a stream of multiple GML documents effectively. It shares the structural information among multiple GML documents by a common dictionary to employ the dynamic compression method and uses the delta compression method for the coordinate data. Experimental results show that GDScomp can achieve satisfactory compression performance when compressing GML documents streams.

Keywords

GML Documents stream Common dictionary Dynamic compression Delta compression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Open GIS Consortium. Open GIS Geography Markup Language (GML) Implementation Specification Version 3.1.0, http://www.opengis.net/gml
  2. 2.
    Corcoles, J., Gonzalez, P.: A specification of a spatial query language over GML. In: Proceedings of ACM-GIS 2001, pp. 112–117 (2001)Google Scholar
  3. 3.
    Guan, J., Zhou, S.: GPress: Towards Effective GML Documents Compression. In: Proceedings of the 23rd International Conference on Data Engineering (ICDE 2007), pp. 1473–1474 (2007)Google Scholar
  4. 4.
    Guan, J., Zhou, S., Chen, Y.: An Effective GML Documents Compressor. IEICE Transactions on Information and Systems E91-D(7), 1982–1990 (2008)CrossRefGoogle Scholar
  5. 5.
    Gzip (2000), http://www.gzip.org/
  6. 6.
    Moffat, A.: Implementing the PPM data compression scheme. IEEE Transactions on Communications 38(11), 1917–1921 (1990)CrossRefGoogle Scholar
  7. 7.
    Liefke, H., Suciu, D.: XMill: An efficient compressor for XML data. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (SIGMOD 2000), pp. 153–164 (2000)Google Scholar
  8. 8.
    Tolani, P., Haritsa, J.: XGRIND: A query-friendly XML compressor. In: IEEE Proceedings of the 18th International Conference on Data Engineering (ICDE 2002), pp. 225–234 (2002)Google Scholar
  9. 9.
    Cheney, J.: Compressing XML with multiplexed hierarchical PPM models. In: Proceedings of the IEEE Data Compression Conference (DCC 2001), pp. 163–172 (2001)Google Scholar
  10. 10.
    Girardot, M., Sundaresan, N.: Millau: An encoding format for efficient representation and exchange of XML over the Web. In: Proceedings of the 9th International WWW Conference, pp. 747–765 (2000)Google Scholar
  11. 11.
    Gao, J., Yang, D., Tang, S., et al.: XPath Evaluation Oriented XML Data Stream Compression. Journal of Software 16(2), 123–232 (2005)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sakr, S.: An Empirical Evaluation of XML Compression Tools. In: Proceedings of DASFAA Workshops 2009, pp. 49–63 (2009)Google Scholar
  15. 15.
    CityGML (2002), http://www.citygml.org/
  16. 16.
    German Working Committee of the Surveying Authorities. Authoritative Real Estate Cadastre Information System (ALKIS), http://www.lv-bw.de/alkis.info/nas-bsp.html

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yinan Yu
    • 1
  • Yuzhen Li
    • 2
  • Shuigeng Zhou
    • 3
  1. 1.Dept. of Computer Science & TechnologyTongji UniversityChina
  2. 2.Graduate School of Science and TechnologyChiba UniversityJapan
  3. 3.Shanghai Key Lab of Intelligent Information ProcessingFudan UniversityChina

Personalised recommendations