Advertisement

Expansion Properties of Large Social Graphs

  • Fragkiskos D. Malliaros
  • Vasileios Megalooikonomou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6637)

Abstract

Social network analysis has become an extremely popular research area, where the main focus is the understanding of networks’ structure. In this paper, we study the expansibility of large social graphs, a structural property based on the notion of expander graphs (i.e. sparse graphs with strong connectivity properties). It is widely believed that social networks have poor expansion properties, due to their community-based organization. Moreover, this was experimentally confirmed on small scale networks and it is considered as a global property of social networks (independent of the graph’s size) in many applications. What really happens in large scale social graphs? To address this question, we measure the expansion properties of several large scale social graphs using the measure of subgraph centrality. Our findings show a clear difference on the expansibility between small and large scale social networks, and thus structural differences. Our observations could be utilized in a range of applications which are based on social graphs’ structure.

Keywords

Social networks Expansion Measurement Graph Mining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, R., Jeong, H., Barabasi, A.-L.: Diameter of the world wide web. Nature 401, 130–131 (1999)CrossRefGoogle Scholar
  2. 2.
    Chakrabarti, D., Faloutsos, C., McGlohon, M.: Graph mining: Laws and generators. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph Data, ch. 3. Springer, Heidelberg (2010)Google Scholar
  3. 3.
    Chung, F.R.K.: Spectral Graph Theory. CBMS, Regional Conference Series in Mathematics, vol. 92. AMS, Providence (1997)zbMATHGoogle Scholar
  4. 4.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph conductance. In: SODA, pp. 1657–1663 (2009)Google Scholar
  5. 5.
    Erdös, P., Renyí, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17–61 (1960)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Estrada, E., Rodríguez-Velázquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71 (2005)Google Scholar
  7. 7.
    Estrada, E.: Spectral scaling and good expansion properties in complex networks. Europhys. Lett. 73(4), 649–655 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Estrada, E.: Network robustness to targeted attacks. The interplay of expansibility and degree distribution. Eur. Phys. J. B 52, 563–574 (2006)CrossRefzbMATHGoogle Scholar
  9. 9.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Internet topology. In: SIGCOMM, pp. 251–262 (1999)Google Scholar
  10. 10.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull. Amer. Math. Soc. 43 (2006)Google Scholar
  11. 11.
    Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social networks. In: KDD, pp. 611–617 (2006)Google Scholar
  12. 12.
    Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting Positive and Negative Links in Online Social Networks. In: WWW, pp. 641–650 (2010)Google Scholar
  13. 13.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In: KDD, pp. 177–187 (2005)Google Scholar
  14. 14.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph Evolution: Densification and Shrinking Diameters. ACM TKDD 1(1) (2007)Google Scholar
  15. 15.
    Leskovec, J., Lang, K., Dasgupta, A., Mahoney, M.: Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters. Internet Mathematics 6(1), 29–123 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Maiya, A.S., Berger-Wolf, T.Y.: Expansion and search in networks. In: CIKM, pp. 239–248 (2010)Google Scholar
  17. 17.
    Maiya, A.S., Berger-Wolf, T.Y.: Sampling Community Structure. In: WWW, pp. 701–710 (2010)Google Scholar
  18. 18.
    Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and Analysis of Online Social Networks. In: IMC, pp. 29–42 (2007)Google Scholar
  19. 19.
    Mohar, B.: Isoperimetric Number of Graphs. J. Comb. Theor. B 47, 274 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68, 036122 (2003)CrossRefGoogle Scholar
  22. 22.
    Newman, M.E.J.: Finding community structure in networks using the eigenvector of matrices. Phys. Rev. E 74 (2006)Google Scholar
  23. 23.
    Newman, M.E.J.: Modularity and community structure in networks. PNAS 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  24. 24.
    Richardson, M., Agrawal, R., Domingos, P.: Trust management for the semantic web. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp. 351–368. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Tsourakakis, C.E.: Fast Counting of Triangles in Large Real Networks without Counting: Algorithms and Laws. In: ICDM, pp. 608–617 (2008)Google Scholar
  26. 26.
    Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the Evolution of User Interaction in Facebook. In: WOSN, pp. 37–42 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fragkiskos D. Malliaros
    • 1
  • Vasileios Megalooikonomou
    • 1
    • 2
  1. 1.Computer Engineering and Informatics DepartmentUniversity of PatrasRioGreece
  2. 2.Data Engineering Laboratory, Center for Information Science and TechnologyTemple UniversityPhiladelphiaUSA

Personalised recommendations