Advertisement

An Analysis of Network Structure and Post Content for Blog Post Recommendation

  • Wan-Shiou Yang
  • Yi-Rong Lin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6637)

Abstract

The acceleration of Weblogs has increased the perceived information overload for bloggers attempting to find interested or relevant information. Helping bloggers to efficiently locate relevant and high-quality information is imperative. In this research, we therefore propose four approaches that exploit the post citation network, blog-based social network, and post content to facilitate the automatic construction of an authoritative blog post recommender system. The proposed approaches were tested with blog data collected from Baidu Space, and the experimental results revealed that the proposed approaches outperform the content-only approach and the explicit citation approach.

Keywords

Weblog Recommender System Information Retrieval Social Network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adar, E., Zhang, L., Adamic, L., Lukose, R.: Implicit Structure and the Dynamics of Blogspace. In: Workshop on the Weblogging Ecosystem (2004)Google Scholar
  2. 2.
    Aktas, M., Nacar, M., Menczer, F.: Personalizing PageRank Based on Domain Profiles. In: SIGKDD Workshop on Web Mining and Web Usage Analysis (2004)Google Scholar
  3. 3.
    Cayzer, S.: Semantic Blogging and Decentralized Knowledge Management. Communication of the ACM 47(12), 47–52 (2004)CrossRefGoogle Scholar
  4. 4.
    Cen, S., Han, L., Ma, J.: Ranking Weblogs by Analyzing Reading and Commenting Activities. In: International Conference on Web Intelligence and Intelligent Agent Technology (2009)Google Scholar
  5. 5.
    Fujimura, K., Inoue, T., Sugisaki, M.: The EigenRumor Algorithm for Ranking Blogs. In: Workshop on Weblogging Ecosystem (2005)Google Scholar
  6. 6.
    Haveliwala, T.: Topic-sensitive PageRank. In: International Conference on World Wide Web (2002)Google Scholar
  7. 7.
    Hayes, C., Avesani, P., Veeramachaneni, S.: An Analysis of Bloggers and Topics for a Blog Recommender System. In: Workshop on Web Mining (2007)Google Scholar
  8. 8.
    Hsu, W.H., King, A., Paradesi, M., Pydimarri, T., Weninger, T.: Collaborative and Structural Recommendation of Friends Using Weblog-based Social Network Analysis. In: AAAI Spring Symposium on Computational Approaches to Analyzing Weblogs (2006)Google Scholar
  9. 9.
    Huang, Z., Chung, W., Chen, H.: A Graph Model for E-Commerce Recommender Systems. Journal of the American Society for Information Science and Technology 55(3), 259–274 (2004)CrossRefGoogle Scholar
  10. 10.
    Joachims, T., Freitag, D., Mitchell, T.: WebWatcher: A Tour Guide for the World Wide Web. In: International Joint conference on Artificial Intelligence (1997)Google Scholar
  11. 11.
    Karger, D.R., Quan, D.: What Would It Mean to Blog on the Semantic Web. Journal of Web Semantics 3(2), 147–157 (2005)CrossRefGoogle Scholar
  12. 12.
    Kleinberg, J.: Authoritative Sources in a Hyperlinked Environment. Journal of the ACM 46(5), 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kritikopoulos, A., Sideri, M., Varlamis, I.: BlogRank: Ranking Weblogs based on Connectivity and Similarity Features. In: Workshop on Advanced Architectures and Algorithms for Internet Delivery and Applications (2006)Google Scholar
  14. 14.
    Kushmerick, N., Weld, D., Doorenbos, B.: Wrapper Induction for Information Extraction. In: International Joint Conference on Artificial Intelligence (1997)Google Scholar
  15. 15.
    Lashkari, Y.: The WebHound Personalized Document Filtering System (1995), http://rg.media.mit.edu/projects/webhound/
  16. 16.
    Li, Y.-M., Chen, C.-W.: A Synthetical Approach for Blog Recommendation Mechanism: Trust, Social Relation, and Semantic Analysis. In: International Conference on Electronic Business (2007)Google Scholar
  17. 17.
    Lieberman, H.: Letizia: An Agent That Assists Web Browsing. In: International Joint Conference on Artificial Intelligence (1995)Google Scholar
  18. 18.
    Ma, W.-Y., Chen, K.-J.: Introduction to CKIP Chinese Word Segmentation System for the First International Chinese Word Segmentation Bakeoff. In: SIGHAN Workshop on Chinese Language Processing (2003)Google Scholar
  19. 19.
    Mobasher, B., Dai, H., Nakagawa, M., Luo, T.: Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization. Data Mining and Knowledge Discovery 6(1), 61–82 (2002)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nasraoui, O., Petenes, C.: An Intelligent Web Recommendation Engine Based on Fuzzy Approximate Reasoning. In: IEEE International Conference on Fuzzy Systems (2003)Google Scholar
  21. 21.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web. In: International World Wide Web Conference (1998)Google Scholar
  22. 22.
    Pazzani, M., Billsus, D.: Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning 27(4), 313–331 (1997)CrossRefGoogle Scholar
  23. 23.
    Richardson, M., Domingos, P.: The Intelligent Surfer: Probabilistic Combination of Link and content Information in PageRank. In: Advances in Neural Information Processing Systems, vol. 14, pp. 1441–1448 (2002)Google Scholar
  24. 24.
    Terveen, L., Hill, W., Amento, B., McDonald, D., Creter, J.: PHOAKS: A System for Sharing Recommendations. Communications of the ACM 40(3), 59–62 (1997)CrossRefGoogle Scholar
  25. 25.
    Tsai, T.-M., Shih, C.-C., Chou, S.-C.: Personalized Blog Recommendation: Using the Value, Semantic, and Social Model. In: Innovations in Information Technology (2006)Google Scholar
  26. 26.
    Xu, G., Zhang, Y., Zhou, X.: A Latent Usage Approach for clustering Web Transaction and Building User Profile. In: International Conference on Advanced Data Mining and Applications (2005)Google Scholar
  27. 27.
    Wang, J., Li, Q., Chen, Y., Lin, X.: Recommendation in Internet Forums and Blogs. In: Annual Meeting of the Association for Computational Linguistics (2010)Google Scholar
  28. 28.
    Wei, C., Shaw, M.J., Easley, R.F.: A Survey of Recommendation Systems in Electronic Commerce. In: Rust, R.T., Kannan, P.K. (eds.) E-Service: New Directions in Theory and Practice. ME Sharpe Publisher (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wan-Shiou Yang
    • 1
  • Yi-Rong Lin
    • 1
  1. 1.Department of Information ManagementNational Changhua University of EducationChanghuaTaiwan

Personalised recommendations