Advertisement

On the Requirements for User-Centric Spatial Data Warehousing and SOLAP

  • Ganesh Viswanathan
  • Markus Schneider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6637)

Abstract

Data warehouses and OLAP systems help to analyze complex multidimensional data and provide decision support. With the availability of large amounts of spatial data in recent years, several new models have been proposed to enable the integration of spatial data in data warehouses and to help analyze such data. This is often achieved by a combination of GIS and spatial analysis tools with OLAP and database systems, with the primary goal of supporting spatial analysis dimensions, spatial measures and spatial aggregation operations. However, this poses several new challenges related to spatial data modeling in a multidimensional context, such as the need for new spatial aggregation operations and ensuring consistent and valid results. In this paper, we review the existing modeling strategies for spatial data warehouses and SOLAP in all three levels: conceptual, logical and implementation. While studying these models, we gather the most essential requirements for handling spatial data in data warehouses and use insights from spatial databases to provide a “meta-framework” for modeling spatial data warehouses. This strategy keeps the user as the focal point and achieves a clear abstraction of the data for all stakeholders in the system. Our goal is to make analysis more user-friendly and pave the way for a clear conceptual model that defines new multidimensional abstract data types (ADTs) and operations to support spatial data in data warehouses.

Keywords

Spatial Data Data Warehouse Spatial Object Data Cube User View 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling, 2nd edn. (2002)Google Scholar
  2. 2.
    Inmon, W.: Building the data warehouse. Wiley, Chichester (2005)Google Scholar
  3. 3.
    Han, J., Kamber, M.: Data mining: concepts and techniquesGoogle Scholar
  4. 4.
    Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. In: Int. Conf. on Data Engineering, p. 152 (1996)Google Scholar
  5. 5.
    Pedersen, T., Jensen, C.: Multidimensional database technology. Computer 34(12), 40–46 (2002)CrossRefGoogle Scholar
  6. 6.
    Franconi, E., Kamble, A.: A data warehouse conceptual data model. In: Proc. of Scientific and Statistical Database Management, pp. 435–436 (2004)Google Scholar
  7. 7.
    Kamble, A.: A conceptual model for multidimensional data. In: 5th Asia-Pacific Conf. on Conceptual Modelling, vol. 79, pp. 29–38 (2008)Google Scholar
  8. 8.
    Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R Model for the Multidimensional Paradigm. In: ER 1998: Workshops on Data Warehousing and Data Mining, pp. 105–116. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Malinowski, E., Zimányi, E.: Hierarchies in a multidimensional model: from conceptual modeling to logical representation. Data Knowledge Engineering 59(2), 348–377 (2006)CrossRefGoogle Scholar
  10. 10.
    Tryfona, N., Busborg, F., Christiansen, J.: starER: A conceptual model for data warehouse design. In: Proc. of ACM 2nd Int. Workshop on Data Warehousing and OLAP, pp. 3–8 (1999)Google Scholar
  11. 11.
    Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model extending UML. Information Systems 31 (2006)Google Scholar
  12. 12.
    Luján-Mora, S., Trujillo, J., Song, I.: A UML profile for multidimensional modeling in data warehouses. Data Knowledge Engineering 59(3), 725–769 (2006)CrossRefGoogle Scholar
  13. 13.
    Prat, N., Akoka, J., Wattiau, I.: A UML-based data warehouse design method. Decision Support Systems 42(3), 1449–1473 (2006)CrossRefGoogle Scholar
  14. 14.
    Golfarelli, M., Maio, D., Rizzi, S.: The Dimensional Fact Model: a Conceptual Model for Data Warehouses. Int. Journal of Cooperative Information Systems 7, 215–247 (1998)CrossRefGoogle Scholar
  15. 15.
    Hüsemann, B., Lechtenbörger, J., Vossen, G.: Conceptual Data Warehouse Design. In: Workshop on Design and Management of Data Warehouses, pp. 3–9 (2000)Google Scholar
  16. 16.
    Zepeda, L., Celma, M., Zatarain, R.: A Mixed Approach for Data Warehouse Conceptual Design with MDA. In: Int. Conf. on Computational Science and Its Applications, pp. 1204–1217 (2008)Google Scholar
  17. 17.
    Viswanathan, G., Schneider, M.: BigCube: A MetaModel for Managing Multidimensional Data. In: Proceedings of the 19th Int. Conf. on Software Engineering and Data Engineering (SEDE), pp. 237–242 (2010)Google Scholar
  18. 18.
    Blaschka, M., Sapia, C., Höflng, G., Dinter, B.: Finding Your Way through Multidimensional Data Models. In: 9th Int. Workshop on Database and Expert Systems Applications, p. 198 (1998)Google Scholar
  19. 19.
    Vassiliadis, P., Sellis, T.: A survey of logical models for OLAP databases. SIGMOD Record 28(4), 64–69 (1999)CrossRefGoogle Scholar
  20. 20.
    Pedersen, T., Jensen, C., Dyreson, C.: A foundation for capturing and querying complex multidimensional data. Information Systems 26(5), 383–423 (2001)CrossRefzbMATHGoogle Scholar
  21. 21.
    Kimball, R.: A dimensional modeling manifesto. DBMS Magazine 10(9), 58–70 (1997)Google Scholar
  22. 22.
    Agrawal, R., Gupta, A., Sarawagi, S.: Modeling Multidimensional Databases. In: Proceedings of the 13th Int. Conf. on Data Engineering, pp. 232–243 (1997)Google Scholar
  23. 23.
    Rivest, S., Bedard, Y., Marchand, P.: Toward better support for spatial decision making: defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica-Ottawa 55(4), 539–555 (2001)Google Scholar
  24. 24.
    Malinowski, E., Zimányi, E.: Representing spatiality in a conceptual multidimensional model. In: Proceedings of the 12th Annual ACM Int. Workshop on Geographic Information Systems, pp. 12–22. ACM, New York (2004)CrossRefGoogle Scholar
  25. 25.
    Ferri, F., Pourabbas, E., Rafanelli, M., Ricci, F.: Extending geographic databases for a query language to support queries involving statistical data. In: Int. Conf. on Scientific and Statistical Database Management, pp. 220–230. IEEE, Los Alamitos (2002)Google Scholar
  26. 26.
    Jensen, C., Kligys, A., Pedersen, T., Timko, I.: Multidimensional data modeling for location-based services. The Int. Journal on Very Large Data Bases (VLDBJ) 13(1), 1–21 (2004)CrossRefGoogle Scholar
  27. 27.
    Bimonte, S., Tchounikine, A., Miquel, M.: Geocube, a multidimensional model and navigation operators handling complex measures: Application in spatial olap. In: Advances in Information Systems, pp. 100–109 (2006)Google Scholar
  28. 28.
    Bimonte, S., Miquel, M.: When spatial analysis meets olap: Multidimensional model and operators. IJDWM 6(4), 33–60 (2010)Google Scholar
  29. 29.
    Scotch, M., Parmanto, B.: SOVAT: Spatial OLAP visualization and analysis tool. In: Proceedings of the 38th Annual Hawaii Int. Conf. on System Sciences (HICSS), p. 142b. IEEE, Los Alamitos (2005)Google Scholar
  30. 30.
    Han, J., Koperski, K., Stefanovic, N.: GeoMiner: a system prototype for spatial data mining. In: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, pp. 553–556. ACM, New York (1997)CrossRefGoogle Scholar
  31. 31.
    Marchand, P., Brisebois, A., Bédard, Y., Edwards, G.: Implementation and evaluation of a hypercube-based method for spatiotemporal exploration and analysis. ISPRS Journal of Photogrammetry and Remote Sensing 59(1-2), 6–20 (2004)CrossRefGoogle Scholar
  32. 32.
    Shekhar, S., Lu, C., Tan, X., Chawla, S., Vatsavai, R.: MapCube: A visualization tool for spatial data warehouses. Geographic Data Mining and Knowledge Discovery, 73 (2001)Google Scholar
  33. 33.
    Rivest, S., Bédard, Y., Proulx, M., Nadeau, M., Hubert, F., Pastor, J.: SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS Journal of Photogrammetry and Remote Sensing 60(1), 17–33 (2005)CrossRefGoogle Scholar
  34. 34.
    Gomez, L., Haesevoets, S., Kuijpers, B., Vaisman, A.: Spatial aggregation: Data model and implementation. Information Systems 34(6), 551–576 (2009)CrossRefGoogle Scholar
  35. 35.
    Stefanovic, N., Han, J., Koperski, K.: Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Transactions on Knowledge and Data Engineering 12(6), 938–958 (2002)CrossRefGoogle Scholar
  36. 36.
    Han, J., Stefanovic, N., Koperski, K.: Selective materialization: An efficient method for spatial data cube construction. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 144–158. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  37. 37.
    Rigaux, P., Scholl, M., Voisard, A.: Introduction to spatial databases: with application to GIS. Morgan Kaufmann, San Francisco (2002)CrossRefGoogle Scholar
  38. 38.
    Malinowski, E., Zimányi, E.: Spatial hierarchies and topological relationships in the spatial multiDimER model. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD 2005. LNCS, vol. 3567, pp. 17–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  39. 39.
    GeoMondrian Project (December 2010), http://www.spatialytics.org/projects/geomondrian/
  40. 40.
    Pentaho Analysis Services: Mondrian Project (December 2010), http://mondrian.pentaho.org/
  41. 41.
    Java Topology Suite (JTS) (December 2010), http://www.vividsolutions.com/jts/
  42. 42.
    Shekhar, S., Chawla, S.: Spatial databases: a tour. Prentice-Hall, Englewood Cliffs (2003)Google Scholar
  43. 43.
    Guting, R., Schneider, M.: Realm-based spatial data types: the ROSE algebra. The VLDB Journal 4(2), 243–286 (1995)CrossRefGoogle Scholar
  44. 44.
    Guting, R., De Ridder, T., Schneider, M.: Implementation of the ROSE algebra: Efficient algorithms for realm-based spatial data types. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 216–239. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  45. 45.
    Open GIS Consortium: Reference Model (December 2010), http://openlayers.org
  46. 46.
    Schneider, M., Behr, T.: Topological relationships between complex spatial objects. ACM Transactions on Database Systems (TODS) 31(1), 39–81 (2006)CrossRefGoogle Scholar
  47. 47.
    Ruiz, C., Times, V.: A taxonomy of solap operators. In: XXIV Simpósio Brasileiro de Banco de Dados, Fortaleza, CE (2009)Google Scholar
  48. 48.
    OpenLayers mapping client (December 2010), http://openlayers.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ganesh Viswanathan
    • 1
  • Markus Schneider
    • 1
  1. 1.Department of Computer & Information Science & EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations