Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 93))

Abstract

In this chapter, the basic approaches of broadband microwave reflectometry are described in detail. More specifically, time domain reflectometry (TDR) and frequency domain reflectometry (FDR) are presented and the involved instrumentation is fully described. Successively, the FDR/TDR combined approach is described in detail: this approach can help exploit the benefits of both TDR and FDR, without necessarily employing two different measurement setups. Additionally, since the sensing element (or probe) plays a major role in all the aforementioned approaches, a comprehensive description of its design and of the corresponding performance is given. Finally, the basic principles leading to the possibilities of enhancing accuracy in BMR measurements are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Exploring the architectures of network analyzers. Agilent Application Note 1287-2, USA (2000)

    Google Scholar 

  2. Applying error correction to network analyzer measurements. Agilent Application Note 1287-3, USA (2002)

    Google Scholar 

  3. Network analyzer basics. USA (2004)

    Google Scholar 

  4. Time domain reflectometry theory. Agilent Application Note 1304-2, Palo Alto, CA (2006)

    Google Scholar 

  5. Time domain analysis using a network analyzer. Agilent Application Note 1287-12, USA (2007)

    Google Scholar 

  6. Agilent millimiter-wave network analyzers 10 MHz to 110 GHz, with extensions to 1.05 THz. USA, technical overview (2010)

    Google Scholar 

  7. TDR100 instruction manual - revision 2/10. Logan, UT (2010), http://www.campbellsci.com/documents/manuals/tdr100.pdf (cited December 27, 2010)

  8. http://www2.tek.com (2011)

  9. Abou-Khousa, M.A., Baumgartner, M.A., Kharkovsky, S., Zoughi, R.: Novel and simple high-frequency single-port vector network analyzer. IEEE Trans. Instrum. Meas. 59(3), 534–542 (2010)

    Article  Google Scholar 

  10. Andrews, J.R.: Time domain reflectometry (TDR) and time domain transmission (TDT) measurement fundamentals. Application Note AN-15, Boulder, CO (2004)

    Google Scholar 

  11. Artacho, J.M., Fornies-Marquina, J.M., Letosa, J., Garcia, M., Bottreau, A.M.: Direct deconvolution signal in time domain reflectometry. IEEE Trans. Magn. 31(3), 1610–1613 (1995)

    Article  Google Scholar 

  12. Ball, J.A.R.: Characteristic impedance of unbalanced TDR probes. IEEE Trans. Instrum. Meas. 51(3), 532–536 (2002)

    Article  Google Scholar 

  13. Blonquist, J.M., Jones, S.B., Robinson, D.A.: Standardizing characterization of electromagnetic water content sensors: part 2. evaluation of seven sensing systems. Vadose Zone J. 4, 1059–1069 (2005)

    Article  Google Scholar 

  14. Callegaro, L.: The metrology of electrical impedance at high frequency: a review. Meas. Sci. Technol. 20(2), 1–14 (2009)

    Article  Google Scholar 

  15. Cataldo, A., Catarinucci, L., Tarricone, L., Attivissimo, F., Trotta, A.: A frequency-domain method for extending TDR performance in quality determination of fluids. Meas. Sci. Technol. 18(3), 675–688 (2007)

    Article  Google Scholar 

  16. Cataldo, A., Cannazza, G., De Benedetto, E., Tarricone, L., Cipressa, M.: Metrological assessment of TDR performance for moisture evaluation in granular materials. Measurement 42(2), 254–263 (2009)

    Article  Google Scholar 

  17. Cataldo, A., Catarinucci, L., Tarricone, L., Attivissimo, F., Piuzzi, E.: A combined TD-FD method for enhanced reflectometry measurements in liquid quality monitoring. IEEE Trans. Instrum. Meas 58(10), 3534–3543 (2009)

    Article  Google Scholar 

  18. Cataldo, A., Monti, G., De Benedetto, E., Cannazza, G., Tarricone, L.: A noninvasive resonance-based method for moisture content evaluation through microstrip antennas. IEEE Trans. Instrum. Meas. 58(5), 1420–1426 (2009)

    Article  Google Scholar 

  19. Cataldo, A., Monti, G., De Benedetto, E., Cannazza, G., Tarricone, L., Catarinucci, L.: Assessment of a TD-based method for characterization of antennas. IEEE Trans. Instrum. Meas. 58(5), 1412–1419 (2009)

    Article  Google Scholar 

  20. Feng, W., Lin, C.P., Deschamps, R.J., Drnevich, V.P.: Theoretical model of a multisection time domain reflectometry measurement system. Water Resour. Res. 35(8), 2321–2331 (1999)

    Article  Google Scholar 

  21. Friel, R., Or, D.: Frequency analysis of time-domain reflectometry (TDR) with application to dielectric spectroscopy of soil constituents. Geophysics 64(3), 707–718 (1999)

    Article  Google Scholar 

  22. Heimovaara, T.J.: Frequency domain analysis of time domain reflectometry waveforms: 1. measurement of the complex dielectric permittivity of soils. Water Resour. Res. 30(2), 189–199 (1994)

    Article  Google Scholar 

  23. Heimovaara, T.J.: Frequency domain modeling of TDR waveforms in order to obtain frequency dependent dielectric properties of soil samples: a theoretical approach. In: Proceedings of the 2nd International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications (2001)

    Google Scholar 

  24. Heimovaara, T.J., Bouten, W., Verstraten, J.M.: Frequency domain analysis of time domain reflectometry waveforms: 2. a four-component complex dielectric mixing model for soils. Water Resour. Res. 30, 201–209 (1994)

    Article  Google Scholar 

  25. Heimovaara, T.J., Huisman, J.A., Vrugt, J.A., Bouten, W.: Obtaining the spatial distribution of water content along a TDR probe using the SCEM-UA bayesian inverse modeling scheme. Vadose Zone J. 3, 1128–1145 (2004)

    Google Scholar 

  26. Huisman, J.A., Bouten, W., Vrugt, J.A., Ferrè, P.A.: Accuracy of frequency domain analysis scenarios for the determination of complex permittivity. Water Resour. Res. 40 (2004)

    Google Scholar 

  27. Huisman, J.A., Lin, C.P., Weihermuller, L., Vereecken, H.: Accuracy of bulk electrical conductivity measurements with time domain reflectometry. Vadose Zone J. 7(2), 426–433 (2008)

    Article  Google Scholar 

  28. ISO, Guide to expression of uncertainty in measurement (1995)

    Google Scholar 

  29. Jones, S.B., Or, D.: Frequency domain analysis for extending time domain reflectometry water content measurement in highly saline soils. Soil Sci. Soc. Am. J. 68, 1568–1577 (2004)

    Article  Google Scholar 

  30. Jones, S.B., Wraith, J.M., Or, D.: Time domain reflectometry measurement principles and applications. Hydrol. Process. 16(1), 141–153 (2002)

    Article  Google Scholar 

  31. Kelleners, T.J., Robinson, D.A., Shouse, P.J., Ayars, J.E., Skaggs, T.H.: Frequency dependence of the complex permittivity and its impact on dielectric sensor calibration in soils. Soil Sci. Soc. Am. J. 69, 67–76 (2005)

    Article  Google Scholar 

  32. Mohamed, A.M.O.: Principles and applications of time domain electrometry in geoenvironmental engineering. Taylor & Francis Group, UK (2006)

    Google Scholar 

  33. Nicolson, A.M.: Forming the fast Fourier transform of a step response in time-domain metrology. Electron Lett. 9(14), 317–318 (1973)

    Article  Google Scholar 

  34. Oswald, B., Benedickter, H.R., Bachtold, W., Fluhler, H.: A single-rod probe for time domain reflectometry measurements of the water content. Vadose Zone J. 3, 1152–1159 (2004)

    Google Scholar 

  35. Piuzzi, E., Cataldo, A., Cannazza, G., De Benedetto, E.: An improved reflectometric method for soil moisture measurement exploiting an innovative triple-short calibration. IEEE Trans. Instrum. Meas. 59(10), 2747–2754 (2010)

    Article  Google Scholar 

  36. Rapuano, S., Harris, F.J.: An introduction to FFT and time domain windows. IEEE Instrum. Meas. Mag. 10(6), 32–44 (2007)

    Article  Google Scholar 

  37. Robinson, D.A., Jones, S.B., Wraith, J.M., Or, D., Friedman, S.P.: A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry. Vadose Zone J. 2(4), 444–475 (2003)

    Google Scholar 

  38. Robinson, D.A., Schaap, M.G., Or, D., Jones, S.B.: On the effective measurement frequency of time domain reflectometry in dispersive and nonconductive dielectric materials. Water Resour. Res. 41(2), W02,007.1–W02,007.9 (2005)

    Google Scholar 

  39. Sakaki, T., Rajaram, H.: Performance of different types of time domain reflectometry probes for water content measurement in partially saturated rocks. Water Resour. Res. 42(7) (2006)

    Google Scholar 

  40. Selker, J.S., Graff, L., Steenhuis, T.: Noninvasive time domain reflectometry moisture measurement probe. Soil Sci. Soc. Am. J. 57(4), 934–936 (1993)

    Article  Google Scholar 

  41. Timlin, D.J., Pachepsky, Y.A.: Comparison of three methods to obtain the apparent dielectric constant from time domain reflectometry wave traces. Soil Sci. Soc. Am. J. 60(4), 970–977 (1996)

    Article  Google Scholar 

  42. Zegelin, S.J., White, I., Jenkins, D.R.: Improved field probes for soil water content and electrical conductivity measurement using time domain reflectometry. Water Resour. Res. 25(11), 2367–2376 (1989)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cataldo, A., De Benedetto, E., Cannazza, G. (2011). Broadband Reflectometry: Theoretical Background. In: Broadband Reflectometry for Enhanced Diagnostics and Monitoring Applications. Lecture Notes in Electrical Engineering, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20233-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20233-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20232-2

  • Online ISBN: 978-3-642-20233-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics