Advertisement

Kicking a Ball – Modeling Complex Dynamic Motions for Humanoid Robots

  • Judith Müller
  • Tim Laue
  • Thomas Röfer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6556)

Abstract

Complex motions like kicking a ball into the goal are becoming more important in RoboCup leagues such as the Standard Platform League. Thus, there is a need for motion sequences that can be parameterized and changed dynamically. This paper presents a motion engine that translates motions into joint angles by using trajectories. These motions are defined as a set of Bezier curves that can be changed online to allow adjusting, for example, a kicking motion precisely to the actual position of the ball. During the execution, motions are stabilized by the combination of center of mass balancing and a gyro feedback-based closed-loop PID controller.

Keywords

Humanoid Robot Inverse Kinematic Connection Point Manipulate Variable Bezier Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Akin, H.L., Mericli, T., Özkucur, K.C., Gökce, B.: Cerberus 2010 team description paper (2009), http://www.tzi.de/spl/pub/Website/Teams2009/Cerberus10TDP.pdf (as of April 26, 2010)
  2. 2.
    Bartsch, S.: Steuerung der Fortbewegung eines humanoiden Roboters, robust gegen externe Störungen und geeignet für unebenes Terrain, basierend auf biologisch inspirierter Architektur. Diplomarbeit, Universtität Bremen (January 2007)Google Scholar
  3. 3.
    Berger, E., Amor, H.B., Vogt, D., Jung, B.: Towards a simulator for imitation learning with kinesthetic bootstrapping. In: Menegatti, E. (ed.) Workshop Proceedings of Intl. Conf. on Simulation, Modeling and Programming for Autonomous Robots (SIMPAR), pp. 167–173 (November 2008)Google Scholar
  4. 4.
    Borisov, A., Ferdowsizadeh, A., Mohr, C., Mellmann, H., Martius, M., Krause, T., Hermann, T., Welter, O., Xu, Y.: NAO-Team Humboldt 2009 (2009), http://www.naoteamhumboldt.de/papers/NaoTH09Report.pdf (as of April 26, 2010)
  5. 5.
    Brunn, R., Düffert, U., Jüngel, M., Laue, T., Lötzsch, M., Petters, S., Risler, M., Röfer, T., Spiess, K., Sztybryc, A.: GermanTeam 2001. In: Birk, A., Coradeschi, S., Tadokoro, S. (eds.) RoboCup 2001. LNCS (LNAI), vol. 2377, pp. 705–708. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bräunl, T.: Embedded Robotics - Mobile Robot Design and Applications with Embedded Systems. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  7. 7.
    Czarnetzki, S., Kerner, S., Klagges, D.: Combining key frame based motion design with controlled movement execution (2010)Google Scholar
  8. 8.
    Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking control for biped robots. Robotics and Autonomous Systems 57(8), 839–845 (2009)CrossRefGoogle Scholar
  9. 9.
    Faber, F., Behnke, S.: Stochastic optimization of bipedal walking using gyro feedback and phase resetting. In: Proceedings of the International Conference on Humanoid Robots (Humanoids) (2007)Google Scholar
  10. 10.
    Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics - Principles and Practice, 2nd edn. Addison-Wesley Publishing Company, Reading (1990), xXIII, 1174 S : Ill zbMATHGoogle Scholar
  11. 11.
    Graf, C., Härtl, A., Röfer, T., Laue, T.: A robust closed-loop gait for the standard platform league humanoid. In: Zhou, C., Pagello, E., Menegatti, E., Behnke, S., Röfer, T. (eds.) Proceedings of the Fourth Workshop on Humanoid Soccer Robots in Conjunction with the 2009 IEEE-RAS International Conference on Humanoid Robots, Paris, France, pp. 30–37 (2009)Google Scholar
  12. 12.
    Jahn, P.D.K.U., Borkmann, D., Reinhardt, T., Tilgner, R., Rexin, N., Seering, S.: Nao Team HTWK Leipzig team research report 2009 (2009), http://naoteam.imn.htwk-leipzig.de/documents/techReportHTWK.pdf (as of April 26, 2010)
  13. 13.
    Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., Jirukawa, H.: Biped walking pattern generation by using preview control of zero-moment point. In: Proceedings of the 2003 IEEE, International Conference on Robotics and Automation (2003)Google Scholar
  14. 14.
    Niehaus, C., Röfer, T., Laue, T.: Gait optimization on a humanoid robot using particle swarm optimization. In: Pagello, E., Zhou, C., Menegatti, E., Behnke, S. (eds.) Proceedings of the Second Workshop on Humanoid Soccer Robots in Conjunction with the 2007 IEEE-RAS International Conference on Humanoid Robots, Pittsburgh, PA, USA (2007)Google Scholar
  15. 15.
    Panakos, A., Paraschos, A., Pierris, G., Chroni, D., Vafeias, E., Chatzilaris, E., Vazaios, E., Lagoudakis, M.G., Vlassis, N.: Kouretes 2008 - Nao team report (2009), http://www.intelligence.tuc.gr/kouretes/docs/2008-kouretes-nao-report.pdf (as of April 26, 2010)
  16. 16.
    Pratab, R., Ruina, A.: Introduction to Statics and Dynamics. Oxford University Press, Oxford (2009), http://ruina.tam.cornell.edu/Book/ (Preprint)Google Scholar
  17. 17.
    Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck, A., Sieverdingbeck, I., Worch, J.H.: B-Human team report and code release 2009 (2009), http://www.b-human.de/download.php?file=coderelease09_doc

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Judith Müller
    • 1
  • Tim Laue
    • 2
  • Thomas Röfer
    • 2
  1. 1.Fachbereich 3 – Mathematik und InformatikUniversität BremenBremenGermany
  2. 2.Deutsches Forschungszentrum für Künstliche IntelligenzSichere Kognitive SystemeBremenGermany

Personalised recommendations