Entropy-Based Active Vision for a Humanoid Soccer Robot

  • Andreas Seekircher
  • Tim Laue
  • Thomas Röfer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6556)


In this paper, we show how the estimation of a robot’s world model can be improved by actively sensing the environment through considering the current world state estimate through minimizing the entropy of an underlying particle distribution. Being originally computationally expensive, this approach is optimized to become executable in real-time on a robot with limited resources. We demonstrate the approach on a humanoid robot, performing self-localization and ball tracking on a RoboCup soccer field.


Mutual Information Information Gain Humanoid Robot Active Vision Goal Post 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Burgard, W., Fox, D., Thrun, S.: Active mobile robot localization by entropy minimization. In: Proc. of the Second Euromicro Workshop on Advanced Mobile Robotics, pp. 155–162 (1997)Google Scholar
  2. 2.
    Denzler, J., Brown, C.: Optimal selection of camera parameters for state estimation of static systems: An information theoretic approach. Tech. rep., University of Rochester (2000)Google Scholar
  3. 3.
    Fox, D., Burgard, W., Thrun, S.: Active Markov localization for mobile robots. Robotics and Autonomous Systems 25, 195–207 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gouaillier, D., Hugel, V., Blazevic, P., Kilner, C., Monceaux, J., Lafourcade, P., Marnier, B., Serre, J., Maisonnier, B.: The nao humanoid: a combination of performance and affordability. CoRR abs/0807.3223 (2008)Google Scholar
  5. 5.
    Guerrero, P., Ruiz-del-Solar, J., Romero, M.: Explicitly task oriented probabilistic active vision for a mobile robot. In: Iocchi, L., Matsubara, H., Weitzenfeld, A., Zhou, C. (eds.) RoboCup 2008. LNCS, vol. 5399, pp. 85–96. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Gutmann, J.S., Fox, D.: An experimental comparison of localization methods continued. In: Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2002), Lausanne, Switzerland, vol. 1, pp. 454–459 (2002)Google Scholar
  7. 7.
    Kwok, C., Fox, D.: Reinforcement learning for sensing strategies. In: Proceedings of the International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan (2004)Google Scholar
  8. 8.
    Laue, T., Röfer, T.: Particle filter-based state estimation in a competitive and uncertain environment. In: Proceedings of the 6th International Workshop on Embedded Systems, VAMK, University of Applied Sciences, Vaasa, Finland (2007)Google Scholar
  9. 9.
    Laue, T., Röfer, T.: Pose extraction from sample sets in robot self-localization - a comparison and a novel approach. In: Petrović, I., Lilienthal, A.J. (eds.) Proceedings of the 4th European Conference on Mobile Robots - ECMR 2009, Mlini/Dubrovnik, Croatia, pp. 283–288 (2009)Google Scholar
  10. 10.
    Röfer, T., Laue, T., Thomas, D.: Particle-filter-based self-localization using landmarks and directed lines. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 608–615. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Röfer, T., Laue, T., Müller, J., Bösche, O., Burchardt, A., Damrose, E., Gillmann, K., Graf, C., de Haas, T.J., Härtl, A., Rieskamp, A., Schreck, A., Sieverdingbeck, I., Worch, J.H.: B-human team report and code release 2009 (2009),
  12. 12.
    Schill, K., Zetzsche, C., Parakrama, T.: A hybrid architecture for the sensorimotor exploration of spatial scenes. In: Bloch, I., Petrosino, A., Tettamanzi, A.G.B. (eds.) WILF 2005. LNCS (LNAI), vol. 3849, pp. 319–325. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Seara, J.F., Schmidt, G.: Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robotics and Autonomous Systems 48(4), 231–248 (2004)CrossRefGoogle Scholar
  14. 14.
    Stowell, D., Plumbley, M.: Fast multidimensional entropy estimation by k-d partitioning. Signal Processing Letters 16, 1930–1936 (2009)CrossRefGoogle Scholar
  15. 15.
    Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  16. 16.
    Vidal-Calleja, T., Davison, A.J., Andrade-Cetto, J., Murray, D.W.: Active control for single camera slam. In: ICRA, pp. 1930–1936. IEEE, Los Alamitos (2006)Google Scholar
  17. 17.
    Zhou, H., Sakane, S.: Sensor planning for mobile robot localization - a hierarchical approach using a bayesian network and a particle filter. IEEE Transactions on Robotics 24(2), 481–487 (2008)CrossRefGoogle Scholar
  18. 18.
    Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The Shared Vision System for the RoboCup Small Size League. In: Baltes, J., Lagoudakis, M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS(LNAI), vol. 5949, pp. 425–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Seekircher
    • 1
  • Tim Laue
    • 2
  • Thomas Röfer
    • 2
  1. 1.Department of Computer ScienceUniversity of MiamiCoral GablesUSA
  2. 2.Deutsches Forschungszentrum für Künstliche IntelligenzSichere Kognitive SystemeBremenGermany

Personalised recommendations