Nanoparticles and Nanomaterials: Assessing the Risk to Human Health

  • Denis BardEmail author


The particular physical and chemical properties of nanoscale materials are becoming better and better understood all the time. Scientific, industrial, and medical applications are on the increase. The Woodrow Wilson International Centre for Scholars [1] has already listed more than 800 commercial products appealing to this type of material, from cosmetics to tennis rackets and tyres. Since this list is based on voluntary declarations by the industrial sector, the figure is likely to be a serious underestimate, and it is clear that it is also likely to increase exponentially.


Response Relationship Single Wall Carbon Nanotubes Number Concentration Ultrafine Particle Risk Assessment Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
  2. 2.
    National Research Council: Committee on the Institutional Means for the Assessment of Risks to Public Health. Risk Assessment in the Federal Government: Managing the Process. National Academy Press, Washington (DC) (1983)Google Scholar
  3. 3.
    Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR): Risk assessment of products of nanotechnologies. In: European Commission HCD, Brussels (2009)Google Scholar
  4. 4.
    A. Lefranc, S. Larrieu: Particules ultrafines et santé: Apport des études épidémiologiques. Environnement, Risques & Santé 7, 349–355 (2008)Google Scholar
  5. 5.
    A.B. Hill: The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine 58, 295–300 (1965)Google Scholar
  6. 6.
    G. Oberdorster, Z. Sharp, V. Atudorei, et al.: Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health 65, 1531–1543 (2002)CrossRefGoogle Scholar
  7. 7.
    J.G. Ayres, P. Borm, F.R. Cassee, et al.: Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential: A workshop report and consensus statement. Inhal. Toxicol. 20, 75–99 (2008)CrossRefGoogle Scholar
  8. 8.
    A.R. Murray, E. Kisin, S.S. Leonard, et al.: Oxidative stress and inflammatory response in dermal toxicity of single-walled carbon nanotubes. Toxicology 257, 161–171 (2009)CrossRefGoogle Scholar
  9. 9.
    Haut Conseil de la Santé publique: Avis relatif à la sécurité des travailleurs lors de l’exposition aux nanotubes de carbone. Paris (2009)Google Scholar
  10. 10.
    L. Gonzalez, D. Lison, M. Kirsch-Volders: Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2, 252–273 (2008)CrossRefGoogle Scholar
  11. 11.
    R. Landsiedel, M. Kapp, M. Schulz, et al.: Genotoxicity investigations on nanomaterials: Methods, preparation and characterization of test material, potential artifacts and limitations – many questions, some answers. Mutation Res. 681, 241–258 (2009)CrossRefGoogle Scholar
  12. 12.
    D. Bard: Extrapoler des hautes doses aux faibles doses. In: D. Bard, A. Cicolella, M. Jouan, et al. Sciences et décision en santé environnementale. Société française de santé publique, Vandœuvre-lès-Nancy (1997) pp. 139–151Google Scholar
  13. 13.
    D. Bard: Les effets des faibles doses: Un débat épistémologique et ses conséquences décisionnelles. Environnement, Risques & Santé 5, 65–68 (2006)Google Scholar
  14. 14.
    N. Künzli, R. Kaiser, S. Medina, et al.: Public health impact of outdoor and traffic-related air pollution: A European assessment. Lancet 356, 795–801 (2000)CrossRefGoogle Scholar
  15. 15.
    S. Weichenthal, A. Dufresne, C. Infante-Rivard: Indoor ultrafine particles and childhood asthma: Exploring a potential public health concern. Indoor Air 17, 81–91 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Weichenthal, A. Dufresne, C. Infante-Rivard, L. Joseph: Characterizing and predicting ultrafine particle counts in Canadian classrooms during the winter months: Model development and evaluation. Environ. Res. 106, 349–360 (2008)CrossRefGoogle Scholar
  17. 17.
    W. Ott, L. Wallace: Ultrafine particle exposures in homes, automobiles, and restaurants. Epidemiology 19, S129–S130 (2008)CrossRefGoogle Scholar
  18. 18.
    H. Boogaard, G. Borgman, J. Kamminga, H. Hoek: Exposure to ultrafine particles and noise during cycling and driving in 11 Dutch cities. Epidemiology 19, S110 (2008)Google Scholar
  19. 19.
    F. Forastiere, M. Stafoggia, S. Picciotto, et al.: A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am. J. Respir. Crit. Care Med. 172, 1549–1555 (2005)CrossRefGoogle Scholar
  20. 20.
    Comité de la prévention et de la précaution: Nanotechnologies, nanoparticules: Quels dangers, quels risques? Ministère de l’Ecologie et du Développement Durable, Paris (2006)Google Scholar
  21. 21.
    The Royal Society & The Royal Academy of Engineering: Nanoscience and Nanotechnologies. The Royal Society, London (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Département d’épidémiologieEcole des hautes études en santé publiqueRennes CedexFrance

Personalised recommendations