Advertisement

Elements of Epidemiology

  • Agnès LefrancEmail author
  • Sophie Larrieu
Chapter

Abstract

Epidemiology is defined as the study of the distribution of diseases and their determining factors [1, 2]. In the field of environmental health, it thus investigates the relationship between different aspects of environmental exposure and human health. Epidemiology does not consider individuals, but rather groups of individuals specified by some common characteristic, e.g., exposure to some given substance, a pathology, etc. It then compares these groups of individuals, for example, to answer a question like: when individuals are exposed to a given substance, are they more often affected by a certain pathology?

Keywords

Health Indicator Ultrafine Particle Peak Expiratory Flow Rate Cutaneous Contact Time Series Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Bouyer et al.: Epidémiologie. Principes et méthodes quantitatives. INSERM, Paris, 498 p. (1995)Google Scholar
  2. 2.
    K. Rothman, S. Greenland: Modern Epidemiology. Lippincott Williams & Wilkins, Philadelphia, 752 p. (1998)Google Scholar
  3. 3.
    F.C. Hill: The environment and disease: Association or causation? Proc. R. Soc. Med. 58, 295–300 (1965)Google Scholar
  4. 4.
    C.A. Pope, D.W. Dockery: Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 56, 709–742 (2006)Google Scholar
  5. 5.
    G. Oberdorster, E. Oberdorster, J. Oberdorster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005)CrossRefGoogle Scholar
  6. 6.
    D.C. Chalupa et al.: Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 112, 879–882 (2004)CrossRefGoogle Scholar
  7. 7.
    P.J. Anderson, J.D. Wilson, F.C. Hiller: Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97, 1115–1120 (1990)CrossRefGoogle Scholar
  8. 8.
    A. Elder et al. Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178 (2006)CrossRefGoogle Scholar
  9. 9.
    W.G. Kreyling, M. Semmler-Behnke, W. Möller: Ultrafine particle–lung interactions: Does size matter? J. Aerosol Med. 19, 74–83 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Peters et al. Translocation and potential neurological effects of fine and ultrafine particles: A critical update. Part. Fibre Toxicol. 3, 13 (2006)CrossRefGoogle Scholar
  11. 11.
    C. de Haar et al.: Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice. Clin. Exp. Allergy 36, 1469–1479 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Sioutas, R.J. Delfino, M. Singh: Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ. Health Perspect. 113, 947–955 (2005)CrossRefGoogle Scholar
  13. 13.
    A. Peters et al.: Respiratory effects are associated with the number of ultrafine particles. Am. J. Respir. Crit. Care Med. 155, 1376–1383 (1997)Google Scholar
  14. 14.
    H.E. Wichmann et al.: Daily mortality and fine and ultrafine particles in Erfurt, Germany. Part I: Role of particle number and particle mass. Res. Rep. Health Eff. Inst. 98, 5–86 (2000)Google Scholar
  15. 15.
    S. von Klot et al.: Increased asthma medication use in association with ambient fine and ultrafine particles. Eur. Respir. J. 20, 691–702 (2002)CrossRefGoogle Scholar
  16. 16.
    A. Henneberger et al.: Repolarization changes induced by air pollution in ischemic heart disease patients. Environ. Health Perspect. 113, 440–446 (2005)CrossRefGoogle Scholar
  17. 17.
    R. Ruckerl et al.: Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. Am. J. Respir. Crit. Care Med. 173, 432–441 (2006)CrossRefGoogle Scholar
  18. 18.
    R. Ruckerl et al.: Ultrafine particles and platelet activation in patients with coronary heart disease: Results from a prospective panel study. Part. Fibre Toxicol. 4, 1 (2007)CrossRefGoogle Scholar
  19. 19.
    M. Stolzel et al.: Daily mortality and particulate matter in different size classes in Erfurt, Germany. J. Expo. Sci. Environ. Epidemiol. 17, 458–467 (2007)CrossRefGoogle Scholar
  20. 20.
    K. Hildebrandt et al.: Short-term effects of air pollution: A panel study of blood markers in patients with chronic pulmonary disease. Part. Fibre Toxicol. 6, 25 (2009)CrossRefGoogle Scholar
  21. 21.
    S. Breitner et al.: Short-term mortality rates during a decade of improved air quality in Erfurt, Germany. Environ. Health Perspect. 117, 448–454 (2009)Google Scholar
  22. 22.
    J. Pekkanen et al.: Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ. Res. 74, 24–33 (1997)CrossRefGoogle Scholar
  23. 23.
    P. Penttinen et al.: Ultrafine particles in urban air and respiratory health among adult asthmatics. Eur. Respir. J. 17, 428–435 (2001)CrossRefGoogle Scholar
  24. 24.
    P. Penttinen et al.: Number concentration and size of particles in urban air: Effects on spirometric lung function in adult asthmatic subjects. Environ. Health Perspect. 109, 319–323 (2001)CrossRefGoogle Scholar
  25. 25.
    J. Pekkanen et al.: Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: The Exposure and Risk Assessment for Fine and Ultrafine Particles in Ambient Air (ULTRA) study. Circulation 106, 933–938 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Kettunen et al.: Associations of fine and ultrafine particulate air pollution with stroke mortality in an area of low air pollution levels. Stroke 38, 918–922 (2007)CrossRefGoogle Scholar
  27. 27.
    T. Lanki et al.: Hourly variation in fine particle exposure is associated with transiently increased risk of ST segment depression. Occup. Environ. Med. 65, 782–786 (2008)CrossRefGoogle Scholar
  28. 28.
    J.J. De Hartog et al.: Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: The ULTRA study. Am. J. Epidemiol. 157, 613–623 (2003)CrossRefGoogle Scholar
  29. 29.
    K.L. Timonen et al.: Daily variation in fine and ultrafine particulate air pollution and urinary concentrations of lung Clara cell protein CC16. Occup. Environ. Med. 61, 908–914 (2004)CrossRefGoogle Scholar
  30. 30.
    A. Ibald-Mulli et al.: Effects of particulate air pollution on blood pressure and heart rate in subjects with cardiovascular disease: A multicenter approach. Environ. Health Perspect. 112, 369–377 (2004)CrossRefGoogle Scholar
  31. 31.
    K.L. Timonen et al.: Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease: The ULTRA study. J. Expo. Sci. Environ. Epidemiol. 16, 332–341 (2006)CrossRefGoogle Scholar
  32. 32.
    F. Forastiere et al.: A case-crossover analysis of out-of-hospital coronary deaths and air pollution in Rome, Italy. Am. J. Respir. Crit. Care Med. 172, 1549–1555 (2005)CrossRefGoogle Scholar
  33. 33.
    S. von Klot et al.: Ambient air pollution is associated with increased risk of hospital cardiac readmissions of myocardial infarction survivors in five European cities. Circulation 112, 3073–3079 (2005)CrossRefGoogle Scholar
  34. 34.
    T. Lanki et al.: Associations of traffic-related air pollutants with hospitalisation for first acute myocardial infarction. The HEAPSS study. Occup. Environ. Med. 63, 844–851 (2006)CrossRefGoogle Scholar
  35. 35.
    Z.J. Andersen et al.: Size distribution and total number concentration of ultrafine and accmulation mode particles and hospital admissions in children and the elderly in Copenhagen, Denmark. Occup. Environ. Med. 65, 458–466 (2007)CrossRefGoogle Scholar
  36. 36.
    Z.J. Andersen et al.: Ambient air pollution triggers wheezing symptoms in infants. Thorax 63, 710–716 (2008)CrossRefGoogle Scholar
  37. 37.
    F. Mathé et al.: La mesure des particules en suspension dans l’air ambiant: Applications dans les réseaux français de surveillance de la qualité de l’air. Analusis Magazine 26, 27–33 (1998)Google Scholar
  38. 38.
    J. Pekkanen, M. Kulmala: Exposure assessment of ultrafine particles in epidemiologic time-series studies. Scand. J. Work Environ. Health. 30, 9–18 (2004)Google Scholar
  39. 39.
    P. Aalto et al.: Aerosol particle number concentration measurements in five European cities using TSI-3022 condensation particle counter over a three-year period during health effects of air pollution on susceptible subpopulations. J. Air Waste Manag. Assoc. 55, 1064–1076 (2005)Google Scholar
  40. 40.
    G. Buzorius et al.: Spatial variation of aerosol number concentration in Helsinki city. Atmospheric Environment 33, 553–565 (1999)CrossRefGoogle Scholar
  41. 41.
    M. Maclure: The case-crossover design: A method for studying transient effects on the risk of acute events. Am. J. Epidemiol. 133, 144–153 (1991)Google Scholar
  42. 42.
    F. Marano et al.: Impacts des particules atmosphériques sur la santé: Aspects toxicologiques. Environnement, Risques et Santé 3, 87–96 (2004)Google Scholar
  43. 43.
    A.B. Knol et al.: Expert elicitation on ultrafine particles: Likelihood of health effects and causal pathways. Part. Fibre Toxicol. 6, 19 (2009)CrossRefGoogle Scholar
  44. 44.
    Z. Chen et al.: Acute toxicological effects of copper nanoparticles in vivo. Toxicol. Lett. 163, 109–120 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut de veille sanitaire (InVS)Saint-Maurice CedexFrance
  2. 2.Cellule de l’InVS en région (CIRE)Saint DenisFrance

Personalised recommendations