Advertisement

Nanoparticle Toxicity Mechanisms: Oxidative Stress and Inflammation

  • Béatrice L’AzouEmail author
  • Francelyne Marano
Chapter

Abstract

Toxicology plays a key role in understanding the potentially harmful biological effects of nanoparticles, since epidemiological studies are still difficult to implement given the lack of data concerning exposure. For this reason, in 2005, Günter Oberdörster coined the term ‘nanotoxicology’ to specify the emerging discipline that dealt with ultrafine particles (UFP). It involves in vivo or in vitro studies under controlled conditions to establish the dose–response relationship, so difficult to expose by epidemiological studies. It also aims to determine the thresholds below which biological effects are no longer observed. It is concerned with the role played by properties specific to nanoparticles in the biological response: size, surface reactivity, chemical composition, solubility, etc.

Keywords

Reactive Oxygen Species Reactive Oxygen Species Production Allergic Rhinitis Ultrafine Particle Atmospheric Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005)CrossRefGoogle Scholar
  2. 2.
    K. Donaldson, V. Stone, C.L. Tran, W. Krieling, P.J. Borm: Nanotoxicology. Occup. Environ. Med. 61, 727–728 (2004)CrossRefGoogle Scholar
  3. 3.
    A. Nel, T. Xia, L. Mädler, N. Li: Toxic potential of materials at the nano level. Science 311, 622–627 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    Extrapol: Pollution atmosphérique: Particules ultrafines et santé, no. 3 (2007)Google Scholar
  5. 5.
    P.H. Hoet, A. Nemmar, B. Naemery: Health impact of nanomaterials? Nat. Biotechnol. 22 (2004)Google Scholar
  6. 6.
    S. Lanone, J. Boczkowski: Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006)CrossRefGoogle Scholar
  7. 7.
    F. Russo-Marie, A. Peltier, B. Polla: L’inflammation. Paris, John Libbey Eurotext, 565 pages (1998)Google Scholar
  8. 8.
    T. Cedervall, I. Lynch, S. Lindman, T. Berggard, E. Thulin, H. Nilsson, K.A. Dawson, S. Linse: Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. PNAS USA 104, 2050–2055 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M. Arredouani, Z. Yang, Y. Ning, et al.: The scavenger receptor MARCO is required for lung defense against pneumoccocal pneumonia and inhaled particles. J. Exp. Med. 200, 267–272 (2004)CrossRefGoogle Scholar
  10. 10.
    A. Kocbach, A.I. Totlandsda, M. Lag, M. Refsnes, P.E. Schwarze: Differential binding of cytokines to environmentally relevant particles: A possible source for misinterpretation of in vitro results? Toxicol. Lett. 176, 131–137 (2008)CrossRefGoogle Scholar
  11. 11.
    S. Val, S. Hussain, S. Boland, R. Hamel, A. Baeza-Squin, F. Marano: Carbon black and titanium dioxide nanoparticles induce pro-inflammatory response in bronchial epithelial cells: Need for multiparametric evaluation due to adsorption artefacts. Inhal. Toxicol. 21, 115–122 (2009)CrossRefGoogle Scholar
  12. 12.
    I. Lynch, K.A. Dawson: Protein–nanoparticle interaction. Nano Today 3, 40–47 (2008)CrossRefGoogle Scholar
  13. 13.
    S. Linse, C. Cabaleiro-Lago, W.F. Wue, et al.: Nucleation of protein fibrillation by nanoparticles. Proc. Natl. Acad. Sci. USA 104, 8691–8696 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    M.I. Gilmour: Interaction of air pollutants and pulmonary allergic responses in experimental animals. Toxicology 105, 335–342 (1995)CrossRefGoogle Scholar
  15. 15.
    V. Castranova, V. Vallyathan, D.M. Ramsey, J.L. McLaurin, D. Pack, S. Leonard, M.W. Barger, J.Y. Ma, N.S. Dalal, A. Teass: Augmentation of pulmonary reactions to quartz inhalation by trace amounts of iron-containing particles. Environ. Health Perspect. 105, 1319–1324 (1997)Google Scholar
  16. 16.
    M.C. Jaurand, F. Lévy: Effets cellulaires et moléculaires de l’amiante. Med. Sci. 15, 1370–1378 (1999)Google Scholar
  17. 17.
    J.M. Reimund: Stress oxydant au cours des syndromes inflammatoires chroniques. Nutrition clinique et métabolisme 16, 275–284 (2002)CrossRefGoogle Scholar
  18. 18.
    J.L. Beaudeux, J. Peynet, D. Bonnefont-Rousselot, P. Therond, J. Delattre, A. Legrand: Stress oxydant: Sources cellulaires des espèces réactives de l’oxygène et de l’azote. Ann. Pharm. Fr. 64, 373–381 (2006)Google Scholar
  19. 19.
    W.A. Pryor, G.L. Squadrito: The chemistry of peroxynitrite. Am. J. Physiol. 268, L622–L699 (1995)Google Scholar
  20. 20.
    G. Deby-Dupont, C. Deby, M. Lamy: Données actuelles sur la toxicité de l’oxygène. Réanimation 11, 28–39 (2002)CrossRefGoogle Scholar
  21. 21.
    P. Masion, J.C. Presier, J.L. Balligrand: Les espèces réactives de l’azote: Bénéfiques ou délétères? Nutrition clinique et métabolisme 16, 248–252 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Gardès-Albet: Stress oxydant: Aspects physico-chimiques des espèces réactives de l’oxygène. Ann. Pharm. Fr. 64, 365–372 (2006)Google Scholar
  23. 23.
    A. Favier: Le stress oxydant: Mécanismes biochimiques. L’Actualité chimique November–December, 108–115 (2003)Google Scholar
  24. 24.
    Y.H. Huang, T.C. Zhang: Effects of dissolved and oxygen on formation of corrosion products and concomitant oxygen and nitrate reduction in zero-valent iron systems with or without aqueous Fe(II). Water Res. 39, 1751–1760 (2005)CrossRefGoogle Scholar
  25. 25.
    J. Pincemail, R. Limet, J.O. Defraigne: Stress oxydant et transmission cellulaire: Implication dans le développement du cancer. Medi. Sphere 134, 1–4 (2001)Google Scholar
  26. 26.
    S.S. Leonard, G.K. Harris, X. Shi: Metal-induced oxidative stress and signal transduction. Free Radical Biol. Med. 37, 1921–1942 (2004)CrossRefGoogle Scholar
  27. 27.
    J.J. Marnett, J.N. Riggins, J.D. West: Endogenous generation of reactive oxidants and electrophiles and their reactions with DNA and protein. J. Clin. Invest. 111, 583–593 (2003)Google Scholar
  28. 28.
    J. Pincemail, M. Meurisse, R. Limet, J.O. Defraigne: Méthodes d’évaluation du stress oxydatif chez l’homme: Importance en matière de prévention. Cancérologie 95, 1–4 (1999)Google Scholar
  29. 29.
    C.M. Sayes, A.M. Gobin, K.D. Ausman, J. Mendez, J.L. West, V.L. Colvin: Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials 26, 7587–7595 (2005)CrossRefGoogle Scholar
  30. 30.
    B.J. Marquis, S.A. Lave, K.L. Braun, C. Haynes: Analytical methods to assess nanoparticle toxicity. Analyst 134, 425–439 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    S. Arora, J. Jain, J.M. Rajwade, K.M. Paknikar: Cellular response induced by silver nanoparticles: In vitro studies. Toxicol. Letters 179, 93–100 (2008)CrossRefGoogle Scholar
  32. 32.
    E.J. Park, J. Yi, R.H. Chung, D.Y. Ryu, J. Choi, K. Park: Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol. Letters. 180, 222–229 (2008)CrossRefGoogle Scholar
  33. 33.
    T. Xia, P. Korge, J.N. Weiss, N. Li, M.I. Venkatesen, C. Sioutas, A. Nel: Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: Implications of ultrafine particle toxicity. Environ. Health Perspect. 112, 1347–1358 (2004)CrossRefGoogle Scholar
  34. 34.
    A. Baeza, F. Marano: Pollution atmosphérique et maladies respiratoires: Un rôle central pour le stress oxydant. Med. Sci. 23, 497–501 (2007)Google Scholar
  35. 35.
    N. Li, C.Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley: Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 11, 709–731 (2003)Google Scholar
  36. 36.
    K. Donalson, X.Y. Li, W. MacNee: Ultrafine (nanometer) particle mediated lung injury. J. Aerosol. Sci. 29, 553–560 (1998)CrossRefGoogle Scholar
  37. 37.
    Q. Zhang, Y. Kusaka, K. Sato, K. Nakakuki, N. Kohyama, K. Donalson: Differences in the extent of inflammation caused by intratracheal exposure to three ultrafine metals: Role of free radicals. J. Toxicol. Environ. Health A 53, 423–438 (1998)CrossRefGoogle Scholar
  38. 38.
    S. Salvi, S.T. Holgate: Mechanism of particulate matter toxicity. Clin. Exp. Allergy 29, 1187–1194 (1999)CrossRefGoogle Scholar
  39. 39.
    E.J. Park, J. Choi, Y.K. Park, K. Park: Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 245, 90–100 (2008)CrossRefGoogle Scholar
  40. 40.
    G. Oberdörster, J. Ferin, B.E. Lehnert: Correlation between particle size, in vivo particle persistence and lung injury. Environ. Health Perspect. 102, 173–179 (1994)Google Scholar
  41. 41.
    X.Y. Li, D. Brown, S. Smith, W. MacNee, K. Donalson: Short-term inflammatory responses following intratracheal instillation of fine and ultrafine carbon black in rats. Inhal. Toxicol. Environ. Health Perspect. 105, 1279–1283 (1999)Google Scholar
  42. 42.
    K.E. Driscoll, J.K. Maurer: Cytokine and growth factor release by alveolar macrophages: Potential biomarkers of pulmonary toxicity. Toxicol. Pathol. 19, 398–405 (1991)Google Scholar
  43. 43.
    D. Höhr, Y. Steinfartz, R.P. Schins, A.M. Knaapen, G. Martza, B. Fubini, P.J. Borm: The surface area rather then the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat. Int. J. Hyg. Environ. Health. 205, 239–244 (2002)CrossRefGoogle Scholar
  44. 44.
    P.V. Asharani, G.L.K. Mun, S. Valiyaveettil: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 3, 279–290 (2009)CrossRefGoogle Scholar
  45. 45.
    V. Stone, J. Shaw, D. Brown, W. MacNee, S.P. Faux, K. Donalson: The role of oxidative stress in the prolonged inhibitory effect of ultrafine carbon black on epithelial cell function. Toxicol. In Vitro 12, 649–659 (1998)CrossRefGoogle Scholar
  46. 46.
    E. Koike, T. Kobayashi: Chemical and biological oxidative effects of carbon black nanoparticles. Chemosphere 65, 946–951 (2006)CrossRefGoogle Scholar
  47. 47.
    Y.H. Hsin, C.F. Chen, S. Huang, T.S. Shih, P.S. Lai, P.J. Chueh: The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol. Letters 179, 130–139 (2008)CrossRefGoogle Scholar
  48. 48.
    B. L’Azou, J. Jorly, D. On, E. Sellier, F. Moisan, J. Fleury-Feith, J. Cambar, P. Brochard, C. Ohayon: In vitro effects of nanoparticles on renal cells. Particle and Fibre Toxicology 5, 22 (2008)CrossRefGoogle Scholar
  49. 49.
    H. Hussain, S. Boland, A. Baeza-Squiban, R. Hamel, L.C. Thomassen, J.A. Martens, M.A. Billon-Galland, J. Fleury-Feith, F. Moisan, J.C. Pairon, F. Marano: Oxidative stress and proinflammatory effects of carbon black and titanium dioxide nanoparticles: Role of particle surface area and internalized amount. Toxicology 260, 142–149 (2009)CrossRefGoogle Scholar
  50. 50.
    Y.M.W. Jassen, N.H. Heintz, J.P. Marsh, P. Borm, B.T. Mossman: Induction of c-fos et c-jun proto-oncogenes in target cells of the lung and pleura by carcinogenic fibers. Am. J. Physiol. Lung Cell. Mol. Biol. 11, 522–530 (1997)Google Scholar
  51. 51.
    W. Lin, Y. Huang, X.D. Zhou, Y. Ma: In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol. 217, 252–259 (2006)CrossRefGoogle Scholar
  52. 52.
    I. Annessi-Maesano, U. Ackermann, C. Boudet, L. Filleul, S. Medina, R. Slama, G. Viegi: Effets des particules atmosphériques sur la santé: Revues des études épidémiologiques. Environnement, Risques et Santé 3, 97–110 (2004)Google Scholar
  53. 53.
    F. Marano, M. Aubier, P. Brochart, F. De Blay, R. Marthan, B. Nemery, A. Nemmar, B. Wallaert: Impacts des particules atmosphériques sur la santé: Aspects toxicologiques. Environnement, Risques et Santé 3, 87–96 (2004)Google Scholar
  54. 54.
    D. Diaz-Sanchez, A. Tsien, J. Fleming, A. Saxon: Combined diesel exhaust particulate and ragweed allergen challenge markedly enhances human in vivo nasal ragweed-specific IgE and skews cytokine production to a T helper cell 2-type pattern. J. Immunol. 158, 2406–2413 (1997)Google Scholar
  55. 55.
    J.A. Nightingale, R. Maggs, P. Cullinan, L.E. Donnely, D.F. Rogers, R. Kinnersley, K. Fan Chung, P.J. Barnes, M. Ashmore, A. Newman-Taylor: Airway inflammation after controlled exposure to diesel exhaust particulates. Am. J. Respir. Crit. Care Med. 162, 161–166 (2000)Google Scholar
  56. 56.
    N. Li, C. Sioutas, A. Cho, D. Schmitz, C. Misra, J. Sempf, M. Wang, T. Oberley, J. Froines, A. Nel: Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ. Health Perspect. 111, 455–460 (2003)CrossRefGoogle Scholar
  57. 57.
    P.H.N. Salvida, R.W. Clarke, B.A. Coull, R.C. Stearns, J. Lawrence, G.C.K. Murthy, E. Diaz, P. Koutrakis, H. Suh, A. Tsuda, J.J. Godleski: Lung inflammation induced by concentrated ambient air particles is related to particle composition. Am. J. Respir. Crit. Care Med. 165, 1610–1617 (2002)CrossRefGoogle Scholar
  58. 58.
    I.Y. Adamson, R. Vincent, J. Bakowska: Differential production of metalloproteinases after instilling various urban particle samples to rat lung. Exp. Lung Res. 29, 375–388 (2003)CrossRefGoogle Scholar
  59. 59.
    X. Liu, Z. Meng: Effects of airborne fine particulate matter on antioxidant capacity and lipid peroxidation in multiple organs of rats. Inhal. Toxicol. 17, 467–473 (2005)CrossRefGoogle Scholar
  60. 60.
    M. Sagai, H. Saito, H., T. Ichinose, M. Kodama, Y. Mori: Biological effects of diesel exhaust particles. I. In vitro production of superoxide and in vivo toxicity in mouse. Free Radic. Biol. Med. 14, 37–47 (1993)Google Scholar
  61. 61.
    A. Peters, S. Perz, A. Doring, J. Stieber, W. Koenig, H.E. Wichmann: Increases in heart rate during an air pollution episode. Am. J. Epidemiol. 150, 1094–1098 (1999)Google Scholar
  62. 62.
    D.B. Yeats, J.L. Mauderly: Inhaled environmental/occupational irritants and allergens: Mechanisms of cardiovascular and systemic responses. Introduction. Environ. Health Perspect. 109 (Suppl. 4), 479–481 (2001)Google Scholar
  63. 63.
    K. Donaldson, V. Stone, A. Seaton, W. MacNee: Ambient particle inhalation and the cardiovascular system: Potential mechanisms. Environ. Health Perspect. 109 (Suppl. 4), 523–527 (2001)CrossRefGoogle Scholar
  64. 64.
    C.A. Poland, R. Duffin, R.I. Kinloch, A. Maynard, W.A.H. Wallace, A. Seaton, V. Stone, S. Brown, W. MacNee, K. Donaldson: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotech. 10, 1038 (2008)Google Scholar
  65. 65.
    A. Tagaki, A. Hirose, T. Nshimura, N. Fukumori, A. Ogata, N. Ohashi, S. Kitajima, J. Kanno: Induction of mesothelioma in p53+/– mouse by intraperitoneal application of multi-wall carbon nanotube. J. Toxicol. Sci. 33, 105–116 (2008)CrossRefGoogle Scholar
  66. 66.
    V. Stone, M. Tuinman, J.E. Vamvakpoulos, J. Shaw, D. Brown, S. Petterson, S.P. Faux, P. Borm, W. MacNee, F. Michnaelangeli, K. Donalson: Increased calcium influx in a monocytic cell line on exposure to ultrafine carbon black. Eur. Respir. J. 15, 297–303 (2000)CrossRefGoogle Scholar
  67. 67.
    K. Donalson, V. Stone, P. Borm, A. Jimenez, P. Gilmour, R.P. Schins, A.M. Knaapen, I. Rahman, S.P. Faux, D.M. Brown, W. MacNee: Oxidative stress and calcium signalling in the adverse effects of environmental particles PM10. Free Radical Biol. Med. 34, 1369–1382 (2003)CrossRefGoogle Scholar
  68. 68.
    V. Stone, D. Brown, N. Watt, M. Wilson, K. Donalson, H. Ritchie, W. MacNee: Ultrafine particle-mediated activation of macrophages : Intracellular calcium signalling and oxidative stress. Inhal. Toxicol. 12, 345–351 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.EA3672 Université Victor Segalen Bordeaux 2Bordeaux CedexFrance
  2. 2.Laboratoire des réponses moléculaires et cellulaires aux xénobiotiques (RMCX) Unité de biologie fonctionnelle et adaptative (BFA) CNRS EAC 4413 case 7073 Bâtiment BuffonUniversité Paris Diderot-Paris 7Paris Cedex 13France

Personalised recommendations