Advertisement

Exposure, Uptake, and Barriers

  • Armelle Baeza-SquibanEmail author
  • Sophie Lanone
Chapter

Abstract

The nanotechnologies market is booming, e.g., in the food industry (powder additives, etc.) and in medical applications (drug delivery, prosthetics, diagnostic imaging, etc.), but also in other industrial sectors, such as sports, construction, cosmetics, and so on. In this context, with an exponential increase in the number of current and future applications, it is particularly important to evaluate the problem of unintentional (i.e., non-medical) exposure to manufactured nanoparticles (so excluding nanoparticles found naturally in the environment). In this chapter, we begin by discussing the various parameters that must be taken into account in any serious assessment of exposure to man-made nanoparticles. We then list the potential routes by which nanoparticles might enter into the organism, and outline the mechanisms whereby they could get past the different biological barriers. Finally, we describe the biodistribution of nanoparticles in the organism and the way they are eliminated.

Keywords

Gold Nanoparticles Olfactory Bulb Stratum Corneum Intratracheal Instillation Clearance Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Nichols, S. Byard, M.J. Bloxham, J. Botterill, N.J. Dawson, A. Dennis, V. Diart, N.C. North, J.D. Sherwood: A review of the terms agglomerate and aggregate with a recommendation for nomenclature used in powder and particle characterization. J. Pharm. Sci. 91, 2103–2109 (2002)CrossRefGoogle Scholar
  3. 3.
  4. 4.
  5. 5.
    O. Witschger, J.F. Fabries: Particules ultrafines et santé au travail. 2. Sources et caractérisation de l’exposition. Hygiène et Sécurité au Travail, ND 2227, 199, 37–54 (2005)Google Scholar
  6. 6.
    P.J. Anderson, J.D. Wilson, F.C. Hiller: Respiratory tract deposition of ultrafine particles in subjects with obstructive or restrictive lung disease. Chest 97, 1115–1120 (1990)CrossRefGoogle Scholar
  7. 7.
    J.W. Card, D.C. Zeldin, J.C. Bonner, E.R. Nestmann: Pulmonary applications and toxicity of engineered nanoparticles. Am. J. Physiol. Lung Cell. Mol. Physiol. 295, L400–411 (2008)CrossRefGoogle Scholar
  8. 8.
    D.C. Chalupa, P.E. Morrow, G. Oberdorster, M.J. Utell, M.W. Frampton: Ultrafine particle deposition in subjects with asthma. Environ. Health Perspect. 112, 879–882 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Farkas, I. Balashazy, K. Szocs: Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods. J. Aerosol. Med. 19, 329–343 (2006)CrossRefGoogle Scholar
  10. 10.
    G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005)CrossRefGoogle Scholar
  11. 11.
    W.G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdörster, A. Ziesenis: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002)CrossRefGoogle Scholar
  12. 12.
    G. Oberdörster, J. Ferin, P.E. Morrow: Volumetric loading of alveolar macrophages (AM): A possible basis for diminished AM-mediated particle clearance. Exp. Lung Res. 18, 87–104 (1992)CrossRefGoogle Scholar
  13. 13.
    M. Geiser, M. Casaulta, B. Kupferschmid, H. Schulz, M. Semmler-Behnke, W. Kreyling: The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am. J. Respir. Cell. Mol. Biol. 38, 371–376 (2008)CrossRefGoogle Scholar
  14. 14.
    A. des Rieux, V. Fievez, M. Garinot, Y.J. Schneider, V. Préat: Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. J. Control. Release 116, 1–27 (2006)Google Scholar
  15. 15.
    S.D. Conner, S.L. Schmid: Regulated portals of entry into the cell. Nature 422, 37–44 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    M.S. Arredouani, A. Palecanda, H. Koziel, Y.C. Huang, A. Imrich, T.H. Sulahian, Y.Y. Ning, Z. Yang, T. Pikkarainen, M. Sankala, S.O. Vargas, M. Takeya, K. Tryggvason, L. Kobzik: MARCO is the major binding receptor for unopsonized particles and bacteria on human alveolar macrophages. J. Immunol. 175, 6058–6064 (2005)Google Scholar
  17. 17.
    C.A. Poland, R. Duffin, I. Kinloch, A. Maynard, W.A. Wallace, A. Seaton, V. Stone, S. Brown, W. Macnee, K. Donaldson: Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat. Nanotechnol. 3, 423–428 (2008)CrossRefGoogle Scholar
  18. 18.
    B. Rothen-Rutishauser, S. Schürch, P. Gehr: Interactions of particles with membranes. In K. Donaldson, P. Borm, Particle Toxicology, pp. 139–160. Informa Healthcare (2007)Google Scholar
  19. 19.
    L.K. Limbach, Y. Li, R.N. Grass, T.J. Brunner, M.A. Hintermann, M. Muller, D. Gunther, W.J. Stark: Oxide nanoparticle uptake in human lung fibroblasts: Effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39, 9370–9376 (2005)CrossRefGoogle Scholar
  20. 20.
    C. Mühlfeld, B. Rothen-Rutishauser, F. Blank, D. Vanhecke, M. Ochs, P. Gehr: Interactions of nanoparticles with pulmonary structures and cellular responses. Am. J. Physiol. Lung Cell. Mol. Physiol. 294, L817–829 (2008)CrossRefGoogle Scholar
  21. 21.
    W.G. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka, H. Schulz, G. Oberdörster, A. Ziesenis: Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002)CrossRefGoogle Scholar
  22. 22.
    M. Semmler-Behnke, S. Takenaka, S. Fertsch, A. Wenk, J. Seitz, P. Mayer, G. Oberdörster, W.G. Kreyling: Efficient elimination of inhaled nanoparticles from the alveolar region: Evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ. Health Perspect. 115, 728–733 (2007)CrossRefGoogle Scholar
  23. 23.
    M.T. Zhu, W.Y. Feng, Y. Wang, B. Wang, M. Wang, H. Ouyang, Y.L. Zhao, Z.F. Chai: Particokinetics and extrapulmonary translocation of intratracheally instilled ferric oxide nanoparticles in rats and the potential health risk assessment. Toxicol. Sci. 107, 342–351 (2009)CrossRefGoogle Scholar
  24. 24.
    A. Furuyama, S. Kanno, T. Kobayashi, S. Hirano: Extrapulmonary translocation of intratracheally instilled fine and ultrafine particles via direct and alveolar macrophage-associated routes. Arch. Toxicol. 83, 429–437 (2008)CrossRefGoogle Scholar
  25. 25.
    M. Semmler-Behnke, W.G. Kreyling, J. Lipka, S. Fertsch, A. Wenk, S. Takenaka, G. Schmid, W. Brandau: Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4, 2108–2111 (2008)Google Scholar
  26. 26.
    A. Nemmar, P.H.M. Hoet, B. Vanquickenborne, D. Dinsdale, M. Thomeer, M.F. Hoylaerts, H. Vanbilloen, L. Morelmans, B. Nemery: Passage of inhaled particles into the blood circulation in humans. Circulation 105, 411–414 (2002)CrossRefGoogle Scholar
  27. 27.
    N.L. Mills, N. Amin, S.D. Robinson, A. Anand, J. Davies, D. Patel, J.M. de la Fuente, F.R. Cassee, N.A. Boon, W. Macnee, A.M. Millar, K. Donaldson, D.E. Newby: Do inhaled carbon nanoparticles translocate directly into the circulation in humans? Am. J. Respir. Crit. Care Med. 173, 426–431 (2006)CrossRefGoogle Scholar
  28. 28.
    N.R. Yacobi, L. Demaio, J. Xie, S.F. Hamm-Alvarez, Z. Borok, K.J. Kim, E.D. Crandall: Polystyrene nanoparticle trafficking across alveolar epithelium. Nanomedicine 4, 139–145 (2008)Google Scholar
  29. 29.
    J. Chen, M. Tan, A. Nemmar, W. Song, M. Dong, G. Zhang, Y. Li: Quantification of extrapulmonary translocation of intratracheal-instilled particles in vivo in rats: Effect of lipopolysaccharide. Toxicology 222, 195–201 (2006)CrossRefGoogle Scholar
  30. 30.
    J.J. Meiring, P.J. Borm, K. Bagate, M. Semmler, J. Seitz, S. Takenaka, W.G. Kreyling: The influence of hydrogen peroxide and histamine on lung permeability and translocation of iridium nanoparticles in the isolated perfused rat lung. Part. Fibre Toxicol. 2, 3 (2005)CrossRefGoogle Scholar
  31. 31.
    A. Elder, R. Gelein, V. Silva, T. Feikert, L. Opanashuk, J. Carter, R. Potter, A. Maynard, Y. Ito, J. Finkelstein, G. Oberdörster: Translocation of inhaled ultrafine manganese oxide particles to the central nervous system. Environ. Health Perspect. 114, 1172–1178 (2006)CrossRefGoogle Scholar
  32. 32.
    J. Wang, Y. Liu, F. Jiao, F. Lao, W. Li, Y. Gu, Y. Li, C. Ge, G. Zhou, B. Li, Y. Zhao, Z. Chai, C. Chen: Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology 254, 82–90 (2008)CrossRefGoogle Scholar
  33. 33.
    E. Sadauskas, H. Wallin, M. Stoltenberg, U. Vogel, P. Doering, A. Larsen, G. Danscher: Kupffer cells are central in the removal of nanoparticles from the organism. Part. Fibre Toxicol. 4, 10 (2007)CrossRefGoogle Scholar
  34. 34.
    H.R. Kim, K. Andrieux, S. Gil, M. Taverna, H. Chacun, D. Desmaële, F. Taran, D. Georgin, P. Couvreur: Translocation of poly(ethylene glycol-co-hexadecyl)cyanoacrylate nanoparticles into rat brain endothelial cells: Role of apolipoproteins in receptor-mediated endocytosis. Biomacromolecules 8, 793–799 (2007)CrossRefGoogle Scholar
  35. 35.
    G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts: Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 37, 251–277 (2007)CrossRefGoogle Scholar
  36. 36.
    J.P. Ryman-Rasmussen, J.E. Riviere, N.A. Monteiro-Riviere: Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol. Sci. 91, 159–165 (2006)CrossRefGoogle Scholar
  37. 37.
    S.S. Tinkle, J.M. Antonini, B.A. Rich, J.R. Roberts, R. Salmen, K. DePree, E.J. Adkins: Skin as a route of exposure and sensitization in chronic beryllium disease. Environ. Health Perspect. 111, 1202–1208 (2003)CrossRefGoogle Scholar
  38. 38.
    J.G. Rouse, J. Yang, J.P. Ryman-Rasmussen, A.R. Barron, N.A. Monteiro-Riviere: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett. 7, 155–160 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    L.W. Zhang, N.A. Monteiro-Riviere: Assessment of quantum dot penetration into intact, tape-stripped, abraded and flexed rat skin. Skin Pharmacol. Physiol. 21, 166–180 (2008)CrossRefGoogle Scholar
  40. 40.
    L.J. Mortensen, G. Oberdörster, A.P. Pentland, L.A. Delouise: In vivo skin penetration of quantum dot nanoparticles in the murine model: The effect of UVR. Nano Lett. 8, 2779–2787 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    P.H. Hoet, I. Brüske-Hohlfeld, O.V. Salata: Nanoparticles – known and unknown health risks. J. Nanobiotechnology 2, 12 (2004)CrossRefGoogle Scholar
  42. 42.
    E.G. Ragnarsson, I. Schoultz, E. Gullberg, A.H. Carlsson, F. Tafazoli, M. Lerm, K.E. Magnusson, J.D. Söderholm, P. Artursson: Yersinia pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. Lab. Invest. 88, 1215–1226 (2008)CrossRefGoogle Scholar
  43. 43.
    M. Longmire, P.L. Choyke, H. Kobayashi: Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomed. 3, 703–717 (2008)CrossRefGoogle Scholar
  44. 44.
    W.I. Hagens, A.G. Oomen, W.H. de Jong, F.R. Cassee, A.J. Sips: What do we (need to) know about the kinetic properties of nanoparticles in the body? Regul. Toxicol. Pharmacol. 49, 217–229 (2007)CrossRefGoogle Scholar
  45. 45.
    B. Ballou, B.C. Lagerholm, L.A. Ernst, M.P. Bruchez, A.S. Waggoner: Noninvasive imaging of quantum dots in mice. Bioconjug. Chem. 15, 79–86 (2004)CrossRefGoogle Scholar
  46. 46.
    R.S. Yang, L.W. Chang, J.P. Wu, M.H. Tsai, H.J. Wang, Y.C. Kuo, T.K. Yeh, C.S. Yang, P. Lin: Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ. Health Perspect. 115, 1339–1343 (2007)CrossRefGoogle Scholar
  47. 47.
    Z. Chen, H. Chen, H. Meng, G. Xing, X. Gao, B. Sun, X. Shi, H. Yuan, C. Zhang, R. Liu, F. Zhao, Y. Zhao, X. Fang: Biodistribution and metabolic paths of silica coated CdSeS quantum dots. Toxicol. Appl. Pharmacol. 230, 364–371 (2008)CrossRefGoogle Scholar
  48. 48.
    H.S. Choi, W. Liu, P. Misra, E. Tanaka, J.P. Zimmer, B. Itty Ipe, M.G. Bawendi, J.V. Frangioni: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)CrossRefGoogle Scholar
  49. 49.
    M.L. Schipper, G. Iyer, A.L. Koh, Z. Cheng, Y. Ebenstein, A. Aharoni, S. Keren, L.A. Bentolila, J. Li, J. Rao, X. Chen, U. Banin, A.M. Wu, R. Sinclair, S. Weiss, S.S. Gambhir: Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 5, 126–134 (2009)CrossRefGoogle Scholar
  50. 50.
    R. Singh, D. Pantarotto, L. Lacerda, G. Pastorin, C. Klumpp, M. Prato, A. Bianco, K. Kostarelos: Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA 103, 3357–3362 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    E. Fabian, R. Landsiedel, L. Ma-Hock, K. Wiench, W. Wohlleben, B. van Ravenzwaay: Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch. Toxicol. 82, 151–157 (2008)CrossRefGoogle Scholar
  52. 52.
    G. Sonavane, K. Tomoda, K. Makino: Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids Surf. B. Biointerfaces 66, 274–280 (2008)CrossRefGoogle Scholar
  53. 53.
    W.H. De Jong, W.I. Hagens, P. Krystek, M.C. Burger, A.J. Sips, R.E. Geertsma: Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials 29, 1912–1919 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire des réponses moléculaires et cellulaires aux xénobiotiques (RMCX) Unité de biologie fonctionnelle et adaptative (BFA), EAC CNRS 4413 Case 7073Université Paris Diderot-Paris 7Paris Cedex 13France
  2. 2.Institut National de la Santé et de la Recherche Médicale (INSERM U955)Groupe Hospitalier Universitaire Albert Chenevier–Henri MondorCréteil CedexFrance

Personalised recommendations