Life Cycle Models and Risk Assessment

  • Jérôme LabilleEmail author
  • Christine O. Hendren
  • Armand Masion
  • Mark R. Wiesner


Nanomaterials are incorporated into more and more products. There can be little doubt that they will end up in the natural environment, by different pathways and at different stages right through their life cycle. In this respect, they do not differ from other manufactured substances. However, nanomaterials, that is, objects with at least one dimension measuring less than 100 nm, are likely to display novel characteristics and behaviour due to their small size. And as the size of these particles decreases, so the ratio of their surface area to volume increases, thereby altering fundamental characteristics such as reactivity and magnetic and/or optical properties. Indeed, it is precisely these modifications that make nanotechnology so promising. They can result in useful features, such as increased physical strength, better electron transport, or better control of the response to an incident energy in terms of colour or photoreactivity. Many of these novel properties that make nanomaterials so promising will be retained right through their life cycle, and may therefore induce new responses from organisms and the environment.


Life Cycle Exposure Route Environmental Compartment Radical Oxygen Species Influence Diagram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.L. Tran et al.: A scoping study to identify hazard data needs for addressing the risks presented by nanoparticles and nanotubes. Institute of Occupational Medicine (2005)Google Scholar
  2. 2.
    SCENIHR: Opinion on the appropriateness of existing methodologies to assess the potential risks associated with engineered and adventitious products of nanotechnologies. European Commission, Scientific Committee on Emerging and Newly Identified Health Risks (2005)Google Scholar
  3. 3.
    AFSSET: Les nanomatériaux. Effets sur la santé de l’homme et sur l’environnement. Saisine AFSSET 2005/010 (2006)Google Scholar
  4. 4.
    M.R. Wiesner, G.V. Lowry, P. Alvarez, D. Dionysiou, P. Biswas: Environmental Science and Technology 40, 4336 (2006)CrossRefGoogle Scholar
  5. 5.
    Nanotechnology White Paper: US Environmental Protection Agency (2005)Google Scholar
  6. 6.
    Nanotechnologies, a preliminary risk analysis on the basis of a workshop. European Commission: Health and Consumer Protection Directorate General, Brussels (2004)Google Scholar
  7. 7.
    R. Owen, M. Depledge: Marine Pollution Bulletin 50, 609–612 (2005)CrossRefGoogle Scholar
  8. 8.
    C.O. Robichaud, D. Tanzil, U. Weilenmann, M.R. Wiesner: Environmental Science and Technology 39, 8985 (2005)CrossRefGoogle Scholar
  9. 9.
    US EPA: Oil program, Mineral Management Service (2008)Google Scholar
  10. 10.
    N. Saleh et al.: Environmental Engineering Science 24, 45 (2007)CrossRefGoogle Scholar
  11. 11.
    J. Brant, H. Lecoanet, M.R. Wiesner: Journal of Nanoparticle Research 7, 545 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Brant, H.F. Lecoanet, M. Hotze, M.R. Wiesner: Environmental Science and Technology 39, 6343 (2005)CrossRefGoogle Scholar
  13. 13.
    J. Brant, J. Labille, C.O. Robichaud, M. Wiesner: Journal of Colloid and Interface Science 314, 281 (2007)CrossRefGoogle Scholar
  14. 14.
    K.L. Chen, M. Elimelech: Langmuir 22, 10994 (2006)CrossRefGoogle Scholar
  15. 15.
    H.F. Lecoanet, J.Y. Bottero, M.R. Wiesner: Environmental Science and Technology 38, 5164 (2004)CrossRefGoogle Scholar
  16. 16.
    H.F. Lecoanet, M.R. Wiesner: Environmental Science and Technology 38, 4377 (2004)CrossRefGoogle Scholar
  17. 17.
    AQUANANO: Programme national ANR Pnano, (2008–2010)
  18. 18.
    S.J. Klaine et al.: Environmental Toxicology and Chemistry 27, 1825 (2008)CrossRefGoogle Scholar
  19. 19.
    S.N. Luoma, Y.B. Ho, G.W. Bryan: Marine Pollution Bulletin 31, 44 (1995)CrossRefGoogle Scholar
  20. 20.
    C.M. Wood, R.C. Playle, C. Hogstrand: Environmental Toxicology and Chemistry 18, 71 (1999)CrossRefGoogle Scholar
  21. 21.
    K. Morgan: Risk Analysis 25, 1621 (2005)CrossRefGoogle Scholar
  22. 22.
    N.C. Mueller, B. Nowack: Environmental Science and Technology 42, 4447 (2008)CrossRefGoogle Scholar
  23. 23.
    S.A. Blaser, M. Scheringer, M. MacLeod, K. Hungerbühler: Science of the Total Environment 390, 396 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Auffan et al.: Environmental Science and Technology 44, 2689–2694 (2010)CrossRefGoogle Scholar
  25. 25.
    J. Labille et al.: Environmental Pollution, DOI: 10.1016/j.envpol.2010.02.012 (2010)Google Scholar
  26. 26.
    CIRC: Titanium dioxide (group 2B). Centre international de recherche sur le cancer (2006)Google Scholar
  27. 27.
    AGING NANO & TROPH: Programme national ANR CES, (2009–2011)

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jérôme Labille
    • 1
    Email author
  • Christine O. Hendren
    • 2
  • Armand Masion
    • 1
  • Mark R. Wiesner
    • 3
    • 4
  1. 1.Centre européen de recherche et d’enseignements des géosciences de l’environnement (CEREGE)UMR 6635 CNRS Aix/Marseille UniversitéAix-en-Provence Cedex 4France
  2. 2.Civil and Environmental Engineering DepartmentDuke UniversityDurhamUSA
  3. 3.Wiesner Research Group Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  4. 4.Center for the Environmental Implications of NanoTechnology (CEINT)DurhamUSA

Personalised recommendations