Advertisement

Toxicological Models Part B: Environmental Models

  • Jeanne GarricEmail author
  • Eric Thybaud
Chapter

Abstract

Assessment of ecotoxicological risks due to chemical substances is based in part on establishing concentration–response relationships for different organisms, including plants, invertebrates, and vertebrates living on land, fresh water, or sea water. European regulations for assessing the risks due to chemical products thus recommend the measurement of toxic effects on at least three taxons (algae, crustacea, fish) [1]. The assessment becomes more relevant when based upon a variety of different organisms, with a range of different biological and ecological features (autotrophic or heterotrophic, benthic or pelagic habitat, and different modes of reproduction, growth, respiration, or feeding, etc.), but also when it describes the effects of contaminants on sensitive physiological functions such as growth and reproduction, which determine the balance of populations of terrestrial and aquatic species in their environment.

Keywords

TiO2 Nanoparticles Nanoparticle Suspension Titanium Dioxide Nanoparticles Diesel Soot Ecotoxicity Test 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No. 1488/94 on Risk Assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Office for Official Publications of the European Communities, Luxembourg (2003)Google Scholar
  2. 2.
    E. Oberdöster: Manufactured nanomaterials (fullerenes, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perspect. 112, 1058–1062 (2004)CrossRefGoogle Scholar
  3. 3.
    E.J. Petersen, Q. Huang, W.J. Weber: Ecological uptake and depuration of carbon nanotubes by Lumbriculus variegatus. Environ. Health Perspect. 116, 496–500 (2008)Google Scholar
  4. 4.
    P.L. Ferguson, G.T. Chandler, R.C. Templeton, A. DeMarco, W.A. Scrivens, B.A. Englehart: Influence of sediment amendment with single-walled carbon nanotubes and diesel soot on bio-accmulation of hydrophobic organic contaminants by benthic invertebrates. Environ. Sci. Technol. 42, 3879–3884 (2008)CrossRefGoogle Scholar
  5. 5.
    M. Crane, R.D. Handy, J. Garrod, R. Owen: Ecotoxicity test methods and environmental hazard assessment for engineered nanoparticles. Ecotoxicology 5, 421–437 (2008)CrossRefGoogle Scholar
  6. 6.
    T.C. King-Heiden, P.N. Wiecinski, A.N. Mangham, M. Metz Kevin, D. Nesbit, J.A. Pedersen, R.J. Hamers, W. Heideman, R.E. Peterson: Quantum dot nanotoxicity assessment using the zebrafish embryo. Environ. Sci. Technol. 43, 1605–1611 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Klaper, J. Crago, J. Barr, D. Arndt, K. Setyowati, J. Chen: Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: Changes in toxicity with functionalization. Environmental Pollution 157, 1152–1156 (2009)CrossRefGoogle Scholar
  8. 8.
    E. Oberdöster, S. Zhu, T.M. Blickley, P. McClellan-Green, M.L. Haasch: Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms. Carbon 44, 1112–1120 (2006)CrossRefGoogle Scholar
  9. 9.
    S.B. Lovern, R. Klaper: Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ. Toxicol. Chem. 25, 1132–1137 (2006)CrossRefGoogle Scholar
  10. 10.
    R.D. Handy, R. Owen, E. Valsami-Jones: The ecotoxicology of nanoparticles and nanomaterials: Current status, knowledge gaps, challenges and future needs. Ecotoxicology 17, 315–325 (2008)CrossRefGoogle Scholar
  11. 11.
    R.A. French, A.R. Jacobson, B. Kim, S.L. Isley, R.L. Penn, P.C. Baveye: Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ. Sci. Technol. 43, 1354–1359 (2009)CrossRefGoogle Scholar
  12. 12.
    R.J. Griffitt, J. Luo, J. Gao, J.C. Bonzongo, D.S. Barber: Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ. Toxicol. Chem. 27, 1972–1978 (2008)CrossRefGoogle Scholar
  13. 13.
    A. Johansen, A.L. Pedresen, K.A. Jensen, U. Karlson, B.M. Hansen, J.J. Scott-Fordsmand, A. Windind: Effects of C60 fullerene nanoparticles on soil bacteria and protozoans. Environ. Toxicol. Chem. 27, 1895–1903 (2008)CrossRefGoogle Scholar
  14. 14.
    Z. Tong, M. Bischoff, L. Nies, B. Applegate, R.F. Turco: Impact of fullerene (C60) on a soil microbial community. Environ. Sci. Technol. 41, 2985–2991 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Doshi, W. Braida, C. Christodoulatos, M. Wazne, G. O’Connor: Nano-aluminium: Transport through sand columns and environmental effects on plants and soil communities. Environ. Res. 106, 296–303 (2008)CrossRefGoogle Scholar
  16. 16.
    J.E. Canas, M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E.H. Lee, D. Olszyk: Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of selected crop species. Environ. Toxicol. Chem. 27, 1922–1931 (2008)CrossRefGoogle Scholar
  17. 17.
    W.M. Lee, Y.J. An, H. Yoon, H.S. Kweon: Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): Plant agar test for water insoluble nanoparticles. Environ. Toxicol. Chem. 27, 1915–1921 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Lin, B. Xing: Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution 150, 243–250 (2007)CrossRefGoogle Scholar
  19. 19.
    L. Yang, D.J. Watts: Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett. 158, 122–132 (2005)CrossRefGoogle Scholar
  20. 20.
    L. Zheng, F. Hong, S. Lu, C. Liu: Effect of nano-TiO2 on strength of natural aged seeds and growth of spinach. Biol. Trace Element Res. 104, 83–91 (2005)CrossRefGoogle Scholar
  21. 21.
    OCDE: Ligne directrice pour les essais de produits chimiques: essai sur plante terrestre; essai d’émergence de plantules et de croissance de plantules, LD 208. OCDE, Paris, 27 p. (2006)Google Scholar
  22. 22.
    OCDE: Ligne directrice pour les essais de produits chimiques: essai sur plante terrestre; essai de vigueur végétative, LD 227. OCDE, Paris, 27 p. (2006)Google Scholar
  23. 23.
    A. Jemec, D. Drobne, M. Remskar, K. Sepcic, T. Tisler: Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcelio scaber). Environ. Toxicol. Chem. 27, 1904–1914 (2008)CrossRefGoogle Scholar
  24. 24.
    S.J. Klaine, P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon, S. Mahendra, M.J. McLaughlin, J.R. Lead: Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27, 1825–1851 (2008)CrossRefGoogle Scholar
  25. 25.
    N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd,P.S. Casey: Comparative toxicity of nanoparticulate ZnO, bulk ZnO and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Wang, X. Zhang, Y. Chen, M. Sommerfeld, Q. Hu: Toxicity assessment of manufactured nanomaterials using the unicellular green alga Chlamydomonas reinhardtii. Chemosphere 73, 1121–1128 (2008)Google Scholar
  27. 27.
    E. Navarro, F. Piccapietra, B. Wagner, F. Marconi, R. Kaegi, N. Odzak, L. Sigg, R. Behra: Toxicity of silver nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol. 42, 8959–8964 (2008)Google Scholar
  28. 28.
    V. Aruoja, H.C. Dubourguier, K. Kasemets, A. Kahru: Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Science of the Total Environment 407, 1461–1468 (2009)Google Scholar
  29. 29.
    D.B. Warheit, R.A. Hoke, C. Finlay, E.M. Donner, K.L. Reed, C.M. Sayes: Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol. Lett. 171, 99 (2007)CrossRefGoogle Scholar
  30. 30.
    S.B. Lovern, J.R. Strickler, R. Klaper: Behavioral and physiological changes in Daphnia magna when exposed to nanoparticle suspensions (titanium dioxide, nano-C60, and C60HxC70Hx). Environ. Sci. Technol. 41, 4465–4470 (2007)CrossRefGoogle Scholar
  31. 31.
    OCDE: Ligne directrice pour les essais de produits chimiques: Daphnia sp., essai d’immobilisation immédiate et essai de reproduction, LD 202. OCDE, Paris, 17 p. (1984)Google Scholar
  32. 32.
    S.B. Lovern, H.A. Owen, R. Klaper: Electron microscopy of gold nanoparticle intake in the gut of Daphnia magna. Nanotoxicology 2, 43–48 (2008)Google Scholar
  33. 33.
    H. Wang, R.L. Wick, B. Xing: Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environmental Pollution 157, 1171–1177 (2009)Google Scholar
  34. 34.
    R.J. Griffitt, R. Weil, K. Hyndman, N.D. Denslow, K. Powers, D. Taylor, D.S. Barber: Exposure to copper nanoparticles causes gill injury and acute lethality in zebrafish (Danio rerio). Environ. Sci. Technol. 23, 8178–8186 (2007)CrossRefGoogle Scholar
  35. 35.
    X.S. Zhu, L. Zhu, Y. Li, Z.H. Duan, W. Chen, P.J. Alvarez: Developmental toxicity in zebrafish (Danio rerio) embryos after exposure to manufactured nanomaterials: Buckminsterfullerene aggregates (nC60) and fullerol. Environ. Toxicol. Chem. 26, 976–979 (2007)CrossRefGoogle Scholar
  36. 36.
    X.S. Zhu, L. Zhu, Z. Duan, R. Qi, Y. Li, Y. Lang: Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (Danio rerio) early developmental stage. Journal of Environmental Science and Health Part A 43, 278–284 (2008)CrossRefGoogle Scholar
  37. 37.
    S. Kashiwada: Distribution of nanoparticles in the see-through medaka (Oryzias latipes). Environ. Health Perspect. 114, 1697–1702 (2006)Google Scholar
  38. 38.
    K.J. Lee, P.D. Nallathamby, L.M. Browning, C.J. Osgood, X.H.N. Xu: In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryo. ACSNAno 1, 133–143 (2007)Google Scholar
  39. 39.
    C.Y. Usenko, S.L. Harper, R.L. Tanguay: Fullerene C60 exposure elicits an oxidative stress response in embryonic zebrafish. Toxicology and Applied Pharmacology 229, 44–55 (2008)CrossRefGoogle Scholar
  40. 40.
    J. Cheng, E. Flahaut, S.H. Cheng: Effect of carbon nanotubes on developing zebrafish (Danio Rerio) embryos. Environ. Toxicol. Chem. 26, 708–716 (2007)CrossRefGoogle Scholar
  41. 41.
    G. Federici, B.J. Shaw, R.D. Handy: Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology 4, 415 (2007)CrossRefGoogle Scholar
  42. 42.
    C.J. Smith, B.J. Shaw, R.D. Handy: Toxicity of single walled carbon nanotubes on rainbow trout (Oncorhynchus mykiss): Respiratory, organ pathologies, and other physiological effects. Aquatic Toxicology 82, 94–109 (2007)CrossRefGoogle Scholar
  43. 43.
    AFNOR: Norme NFT 90-325 Essais des eaux. Détection en milieu aquatique de la génotoxicité d’une substance vis-à-vis des larves de batraciens (Pleurodeles waltl and Ambystoma mexicanum). Essais des micronoyaux. AFNOR Monograph, Paris, 12 p. (1987)Google Scholar
  44. 44.
    AFNOR: Norme 90-325. Qualité de l’eau. Evaluation de la génotoxicité au moyen des larves d’amphibien (Xenopus laevis, Pleurodele waltl). AFNOR, Paris, 17 p. (2000)Google Scholar
  45. 45.
    ISO: Water quality. Evaluation of genotoxicity by measurement of the induction of micronuclei. Part 1. Evaluation of genotoxicity using amphibian larvae. ISO 21427-1, ICS: 13.060.70, Geneva, 15 p. (2006)Google Scholar
  46. 46.
    F. Mouchet, P. Landois, E. Flahaut, E. Pinelli, L. Gauthier: Assessment of the potential in vivo ecotoxicity of double-walled carbon nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum. Nanotoxicology 1, 149–156 (2007)Google Scholar
  47. 47.
    F. Mouchet, P. Landois, E. Sarremejean, G. Bernard, P. Puech, E. Pinelli, E. Flahaut, L. Gauthier: Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquatic Toxicology 87, 127–137 (2008)Google Scholar
  48. 48.
    J.D. Fortner, D.Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner, E.M. Hotze, L.B. Alemany, Y.J. Tao, W. Guo, K.D. Ausman, V.L. Colvin, J.B. Huges: C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 39, 4307–4316 (2005)CrossRefGoogle Scholar
  49. 49.
    D.Y. Lyon, J.D. Fortner, C.M. Sayes, V.L. Colvin, J.B. Huges: Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Sci. Technol. 24, 2757–2762 (2005)Google Scholar
  50. 50.
    Scientific committee on emerging and newly-identified health risks (SCENIHR): Opinion on the appropriateness of the risk assessment methodology in accordance with the technical guidance documents for new and existing substances for assessing the risks of nanomaterials. European Commission, Health & Consumer Protection, 68 p. (2007)Google Scholar
  51. 51.
    K. Hund-Rinke, S. Markus: Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on algae and daphnids. Environ. Sci. Poll. Res. 13, 225–232 (2006)CrossRefGoogle Scholar
  52. 52.
    A. Jemec, D. Drobne, M. Remskar, K. Sepcic, T. Tisler: Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcelio scaber). Environ. Toxicol. Chem. 27, 1904–1914 (2008)CrossRefGoogle Scholar
  53. 53.
    G. Oberdöster, V. Stone, K. Donaldson: Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1, 2–25 (2007)CrossRefGoogle Scholar
  54. 54.
    P. Christian, F. Von der Kammer, M. Baalousha, T.H. Hofmann: Nanoparticles: Structure, properties, preparation and behaviour in environmental media. Ecotoxicology 17, 326–343 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.CEMAGREF Laboratory of Ecotoxicology Freshwater systems, ecology and pollution research unitLyon Cedex 09France
  2. 2.Institut national de l’environnement industriel et des risques (INERIS), Parc technologique ALATAVerneuil-en-HalatteFrance

Personalised recommendations