Advertisement

Toxicological Models Part A: Toxicological Studies of Nanoparticles on Biological Targets and Attempts to Attenuate Toxicity by Encapsulation Techniques

  • Roberta BraynerEmail author
  • Fernand Fiévet
Chapter

Abstract

Nanotechnology has become a major economic issue today, promising a wide range of innovations and opening up interesting prospects in various areas, such as biomedicine, electronics, computing, transport, and others. At the present time, Europe, the United States, and Japan each devote around a billion euros per year for the development of nanotechnologies. As far as France is concerned, in 2004, a report was drawn up on the funding of nanotechnology and nanoscience at the request of the French Ministry of Youth, Education, and Research [1]. The aim of the report was to identify all forms and all sources of public funding devoted to research and development in the areas of nanotechnologies and nanoscience, identifying also their operational context and distinguishing them as far as possible from the areas of microtechnologies and microelectronics.

Keywords

Colloidal Silica Silica Shell Biological Target Euglena Gracilis Trioctylphosphine Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Billon, J.L. Dupont, G. Ghys: Le financement des nanotechnologies et des nanosciences: l’effort des pouvoirs publics en France. Comparaisons internationales. Rapport No. 2004-002, Ministère de la Jeunesse, de l’Education nationale et de la Recherche, Paris (2004)Google Scholar
  2. 2.
    L. Williams, W. Adams: Nanotechnology Demystified: A Self-Teaching Guide. McGraw-Hill (2007)Google Scholar
  3. 3.
    AFSSET: Les nanomatériaux: Effets sur la santé de l’homme et sur l’environnement (2006) www.afsset.fr/upload/bibliotheque/587621558014304413168640606286/-synthese_nanomateriaux_2006.pdf
  4. 4.
    M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    G. Dukovic, M.G. Merkle, J.H. Nelson, S.M. Hughes, A.P. Alivisatos: Photodeposition of Pt on colloidal CdS and CdSe@CdS semiconductor nanostructures. Adv. Mater. 20, 4306 (2008)CrossRefGoogle Scholar
  6. 6.
    A. Fu, W. Gu, B. Boussert, K. Koski, D. Gerion, L. Manna, M. Le Gros, C.A. Larabell, A.P. Alivisatos: Semiconductor quantum dots and rods as single-molecule fluorescent biological labels. Nano Lett. 7, 179 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    T. Zhang, J.L. Stilwell, D. Gerion, L. Ding, O. Elboudwarej, P.A. Cooke, J.W. Gray, A.P. Alivisatos, F.F. Chen: Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements. Nano Lett. 6, 800 (2006)ADSCrossRefGoogle Scholar
  8. 8.
    A. Fu, W. Gu, C. Larabell, A.P. Alivisatos: Semiconductor nanocrystals for biological imaging. Curr. Opin. Neurobiol. 15, 568 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Liu, A.P. Alivisatos: Preparation of asymmetric nanostructures through site selective modification of tetrapods. Nano Lett. 4, 2397 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    L. Manna, D.J. Milliron, A. Meisel, E.C. Scher, A.P. Alivisatos: Controlled growth of tetrapod-branched inorganic nanocrystals. Nature Mater. 2, 382 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    W.U. Huynh, J.J. Dittmer, W.C. Liby, Whiting, A.P. Alivisatos: Controlling the morphology of nanocrystal–polymer composites for solar cells. Adv. Func. Mater. 13, 73 (2003)Google Scholar
  12. 12.
    L.S. Li, J. Hu, W. Yang, A.P. Alivisatos: Band gap variation of size- and shape-controlled colloidal CdSe quantum rods. Nano Lett. 1, 349 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    D. Gerion, F. Pinaud, S.C. Willians, W.J. Parak, D. Zanchet, S. Weiss, A.P. Alivisatos: Synthesis and properties of biocompatible water-soluble silica-coated CdSe@ZnS semiconductor quantum dots. J. Phys. Chem. B 105, 8861 (2001)CrossRefGoogle Scholar
  14. 14.
    W.U. Huynh, X. Peng, A.P. Alivisatos: CdSe nanocrystal rods/poly (3-hexythiophene) composite photovoltaic devices. Adv. Mater. 11, 923 (1999)CrossRefGoogle Scholar
  15. 15.
    W. Yu, X. Peng: Formation of high quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew Chem. Int. Ed. 41, 2368 (2002)CrossRefGoogle Scholar
  16. 16.
    M. Protiere, P. Reiss: Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Res. Lett. 1, 62 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    M. Protiere, P. Reiss: Highly luminescent Cd1 − xZnxSe/ZnS core/shell nanocrystals emitting in the blue–green spectral range. Small 3, 399 (2007)CrossRefGoogle Scholar
  18. 18.
    J.L. Bouldin, T.M. Ingle, A. Sengupta, R. Alexander, R.E. Hannigan, R.A. Buchanan: Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia. Environ. Toxicol. Chem. 27, 1958 (2008)Google Scholar
  19. 19.
    G. Bitton, K. Rhodes, B. Koopman: Cerinofast: An acute toxicity test based on Ceriodaphinia dubia feeding behavior. Environ. Toxicol. Chem. 15, 123 (1996)Google Scholar
  20. 20.
    J.M. Diamond, D.E. Koplish, J. McMahon, R. Rost: Evaluation of the water-effect ratio procedure for metals in a riverine system. Environ. Toxicol. Chem. 16, 509 (1997)CrossRefGoogle Scholar
  21. 21.
    S.R. Pinnell, D. Fairhurst, R. Gilliers, M.A. Mitchnick, N. Kollias: Microfine zinc oxide is a superior sunscreen ingredient to microfine titanium dioxide. Dermatol. Surg. 26, 309 (2000)CrossRefGoogle Scholar
  22. 22.
    D. Jezequel, J. Guenot, N. Jouini, F. Fievet: Submicrometer zinc oxide particles: Elaboration in polyol medium and morphological characteristics. J. Mater. Res. 10, 77 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    C. Feldmann: Polyol-mediated synthesis of nanoscale functional materials. Adv. Func. Mater. 13, 101 (2003)CrossRefGoogle Scholar
  24. 24.
    R. Brayner, S.A. Dahoumane, C. Yéprémian, C. Djediat, M. Meyer, A. Couté, F. Fiévet: ZnO nanoparticles: Synthesis, characterization and ecotoxicological studies. Langmuir 26, 6522 (2010)CrossRefGoogle Scholar
  25. 25.
    R. Brayner, R. Ferrari-Iliou, N. Brivois, C. Djediat, M.F. Benedetti, F. Fievet: Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    R. Brayner: The toxicological impact of nanoparticles. Nano Today 3, 48 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Su, Y. He, H. Lu, L. Sai, Q. Li, W. Li, L. Wang, P. Shen, Q. Huang, C. Fan: The cytotoxicity of cadmium based aqueous phase synthesized quantum dots and its modulation by surface coating. Biomaterials 30, 19 (2009)CrossRefGoogle Scholar
  28. 28.
    S. Braum, S. Rappoport, R. Zusman, D. Avnir, M. Ottolenghi: Biochemically active sol–gel gases: The trapping of enzymes. Mater. Lett. 10, 1 (1990)CrossRefGoogle Scholar
  29. 29.
    D. Avnir, S. Braun, O. Lev, M. Ottolenghi: Enzymes and other proteins entrapped in sol–gel materials. Chem. Mater. 6, 1605 (1994)CrossRefGoogle Scholar
  30. 30.
    B.C. Dave, B. Dunn, J.S. Valentine, J.I. Zink: Sol–gel encapsulation methods for biosensors. Anal. Chem. 66, 1120A (1994)CrossRefGoogle Scholar
  31. 31.
    N. Nassif, O. Bouvet, M.N. Rager, C. Roux, T. Coradin, J. Livage: Living bacteria in silica gels. Nature Mater. 1, 42 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    T. Coradin, E. Mercey, L. Lisnard, J. Livage: Design of silica-coated microcapsules for bioencapsulation. Chem. Commun. 7, 2496 (2001)CrossRefGoogle Scholar
  33. 33.
    P. De Vos, P. Marchetti: Encapsulation of pancreatic islets for transplantation in diabetes: The untouchable islets. Trends Mol. Med. 8, 363 (2002)CrossRefGoogle Scholar
  34. 34.
    H. Uludag, P. De Vos, P.A. Tresco: Technology of mammalian cell encapsulation. Adv. Drug Deliv. Rev. 42, 29 (2000)CrossRefGoogle Scholar
  35. 35.
    M. Boissiere, P.J. Meadows, R. Brayner, C. Helary, J. Livage, T. Coradin: Turning biopolymer particles into hybrid capsules: The example of silica/alginate nanocomposites. J. Mater. Chem. 16, 1178 (2006)CrossRefGoogle Scholar
  36. 36.
    M. Boissiere, J. Allouche, C. Chaneac, R. Brayner, J.M. Devoisselle, J. Livage, T. Coradin: Potentialities of silica/alginate nanoparticles as hybrid magnetic carriers. Int. J. Pharmaceutics 344, 128 (2007)CrossRefGoogle Scholar
  37. 37.
    R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, J. Knowland: Chemical oxidation and DNA damage catalyzed by inorganic sunscreen ingredients. FEBS Lett. 418, 87 (1997)CrossRefGoogle Scholar
  38. 38.
    K. Van Hoecke, K.A.C. De Schamphelaere, P. Van Der Meeren, S. Lucas, C. Janssen: Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: Importance of surface area. Environ. Toxicol. Chem. 27, 1948 (2008)CrossRefGoogle Scholar
  39. 39.
    K.P. Lee, D.P. Kelly: The pulmonary response and clearance of Ludox colloidal silica after 4-week inhalation exposure in rats. Fund. Appl. Toxicol. 19, 399 (1992)CrossRefGoogle Scholar
  40. 40.
    K.P. Lee, D.P. Kelly: Translocation of particle-laden, alveolar macrophages and intra-alveolar granuloma formation in rats exposed to Ludox colloidal amorphous silica by inhalation. Toxicology 77, 205 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Nanomaterials TeamUniversity of Paris 7 Paris-Diderot Interfaces, traitements, organisation et dynamique des systèmes (ITODYS) CNRS UMR 7086Paris Cedex 13France
  2. 2.Laboratoire interfaces, traitements, organisation et dynamique des systèmes (ITODYS) CNRS UMR 7086Université Paris 7 Diderot Bâtiment LavoisierParis Cedex 13France

Personalised recommendations