Advertisement

Fate of Nanoparticles in Aqueous Media

  • Jérôme LabilleEmail author
  • Jean-Yves Bottero
Chapter

Abstract

The European Commission estimated the world nanotechnology market at slightly over 40 billion euros in 2001. In 2010–2015, according to the estimates of the US National Science Foundation (NSF), the worldwide economic stakes due to the advent of nanotechnology could run as high as 1 000 billion dollars per year across all sectors [1]. This growth is founded on the multitude of potential applications of nanotechnologies. Considering the exponential increase in mass production of nanomaterials that this implies, it becomes important to ask what would become of such materials should they be released into the environment. Indeed, nanoparticles are very small, comparable in size to a virus, suggesting a high level of mobility in the environment and living organisms, down to the smallest length scale, that is, internalisation by living cells. For this reason, investigations into this specific problem, underway since the beginning of the 2000s when nanotechnology came into its own, must be organised upstream if possible, but at worst in parallel with research and development, and as far as possible in collaboration with it.

Keywords

Porous Medium Ionic Strength Collision Frequency Nanoparticle Concentration DLVO Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    AFSSET: Les nanomatériaux. Effets sur la santé de l’homme et sur l’environnement. Saisine AFSSET 2005/010 (2006)Google Scholar
  2. 2.
    M. Auffan et al.: Langmuir 24, 3215 (2008)CrossRefGoogle Scholar
  3. 3.
    H.Z. Zhang, J.F. Banfield: J. Mater. Chem. 8, 2073 (1998)CrossRefGoogle Scholar
  4. 4.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley: Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  5. 5.
    R.C. Haddon: Science 261, 1545 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Alargova, S. Deguchi, K. Tsujii: J. Am. Chem. Soc. 123, 10460 (2001)CrossRefGoogle Scholar
  7. 7.
    Y. Marcus et al.: J. Phys. Chem. B 105, 2499 (2001)CrossRefGoogle Scholar
  8. 8.
    G.V. Andrievsky, V.K. Klochkova, A.B. Bordyuhb, G.I. Dovbeshkoc: Chem. Phys. Lett. 364, 8 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J.A. Brant, J. Labille, J.Y. Bottero, M.R. Wiesner: Langmuir 22, 3878 (2006)CrossRefGoogle Scholar
  10. 10.
    S. Deguchi, R.G. Alargova, K. Tsujii: Langmuir 17, 6013 (2001)CrossRefGoogle Scholar
  11. 11.
    W.A. Scrivens, J.M. Tour, K.E. Creek, L. Pirisi: J. Am. Chem. Soc. 116, 4517 (1994)CrossRefGoogle Scholar
  12. 12.
    J. Labille et al.: Fuller. Nanotub. Car. N. 14, 307 (2006)CrossRefGoogle Scholar
  13. 13.
    J. Labille et al.: Environmental Pollution, (ASAP 2010)Google Scholar
  14. 14.
    NANOSEP: In: ANR Programme PRECODD. BRGM, CEREGE, LISBP, LMSGC, INERIS, CIRSEE, IMFT, Arkema France, 2009–2011Google Scholar
  15. 15.
    H.C. Hamaker: Physica 4, 1058 (1937)ADSCrossRefGoogle Scholar
  16. 16.
    R. Hogg, T.W. Healy, D.W. Fuerstenau: Translation Faraday Society 62, 1638 (1966)CrossRefGoogle Scholar
  17. 17.
    B. Derjaguin, L. Landau: Acta Phys. Chim. 14, 633 (1961)Google Scholar
  18. 18.
    E.J.W. Verwey, J.T.G. Overbeek: Theory of the Stability of Lyophobic Colloids. (Elsevier 1948)Google Scholar
  19. 19.
    Y. Adachi: Advances in Colloid and Interface Science 56, 1 (1995)CrossRefGoogle Scholar
  20. 20.
    K.H. Gardner: In: Interfacial Forces and Fields. Theory and Applications, Surfactant Science Series. (Marcel Dekker, New York 1999) pp. 509–550Google Scholar
  21. 21.
    H. Van Olphen: An Introduction to Clay Colloid Chemistry, 2nd edn. (John Wiley, New York 1977)Google Scholar
  22. 22.
    P.C. Hiemenz, R. Rajagopalan: Principles of Colloid and Surface Chemistry, 3rd edn. (Marcel Dekker, New York, Basel, Hong Kong 1997) p. 605Google Scholar
  23. 23.
    N. Solovitch-Vella, J. Labille, J. Rose, P. Chaurand, D. Borschneck, M.R. Wiesner, J.Y. Bottero: Environmental Science and Technology (in press)Google Scholar
  24. 24.
    J. Labille, F. Thomas, I. Bihannic, C. Santaella: Clay Miner. 38, 173 (2003)CrossRefGoogle Scholar
  25. 25.
    J. Labille, F. Thomas, M. Milas, C. Vanhaverbaeke: J. Coll. Interf. Sci. 284, 149 (2005)CrossRefGoogle Scholar
  26. 26.
    C.E. Clapp, W.W. Emerson: Soil Science 114, 210 (1972)CrossRefGoogle Scholar
  27. 27.
    S. Ulrich, A. Laguecir, S. Stoll: J. Nanopart. Res. 6, 595 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Ulrich, M. Seijo, A. Laguecir, S. Stoll: J. Phys. Chem. B 110, 20954 (2006)CrossRefGoogle Scholar
  29. 29.
    S. Ulrich, M. Seijo, S. Stoll: Curr. Opin. Colloid Int. 11, 268 (2006)CrossRefGoogle Scholar
  30. 30.
    M.A. Chappell et al.: Environmental Pollution 157, 1081 (2009)CrossRefGoogle Scholar
  31. 31.
    A.J. Kennedy et al.: Environ. Toxicol. Chem. 27, 1932 (2008)CrossRefGoogle Scholar
  32. 32.
    M. Auffan et al.: Environ. Sci. Technol. 40, 4367 (2006)CrossRefGoogle Scholar
  33. 33.
    M. Von Smoluchowski: Zeitschrift für Physikalische Chemie 92, 129 (1917)Google Scholar
  34. 34.
    K.H. Gardner, T.L. Theis, T.C. Young: Colloid Surface A 141, 237 (1998)CrossRefGoogle Scholar
  35. 35.
    R.W. Newburry: In: The Ecology of Aquatic Insects, ed. by V.H. Resh, D.M. Rosenberg. (Praeger, New York 1984) pp. 323–357Google Scholar
  36. 36.
    N. Tufenkji, M. Elimelech: Environ. Sci. Technol. 38, 529 (2004)CrossRefGoogle Scholar
  37. 37.
    B. Espinasse, E.M. Hotze, M.R. Wiesner: Environ. Sci. Technol. 41, 7396 (2007)CrossRefGoogle Scholar
  38. 38.
    H.F. Lecoanet, J.Y. Bottero, M.R. Wiesner: Environ. Sci. Technol. 38, 5164 (2004)CrossRefGoogle Scholar
  39. 39.
    H.F. Lecoanet, M.R. Wiesner: Environ. Sci. Technol. 38, 4377 (2004)CrossRefGoogle Scholar
  40. 40.
    N. Tufenkji, M. Elimelech: Langmuir 21, 841 (2005)CrossRefGoogle Scholar
  41. 41.
    J.W. Costerton et al.: Annu. Rev. Microbiol. 41, 435 (1987)CrossRefGoogle Scholar
  42. 42.
    T.J. Battin, L.A. Kaplan, J.D. Newbold, C.M.E. Hansen: Nature 426, 439 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    R.N. Jordan: Biofilms 310, 393 (1999)CrossRefGoogle Scholar
  44. 44.
    T. Galle, B. Van Lagen, A. Kurtenbach, R. Bierl: Environ. Sci. Technol. 38, 4496 (2004)CrossRefGoogle Scholar
  45. 45.
    S. Ballance et al.: Canadian Journal of Fisheries and Aquatic Sciences 58, 1708 (2001)CrossRefGoogle Scholar
  46. 46.
    P. Lacroix-Gueu, R. Briandet, S. Leveque-Fort, M.N. Bellon-Fontaine, M.P. Fontaine-Aupart: Comptes Rendus Biologies 328, 1065 (2005)CrossRefGoogle Scholar
  47. 47.
    E. Guiot et al.: Photochemistry and Photobiology 75, 570 (2002)CrossRefGoogle Scholar
  48. 48.
    N. Fatin-Rouge, K. Starchev, J. Buffle: Biophys. J. 86, 2710 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    E. Haustein, P. Schwille: Methods 29, 153 (2003)CrossRefGoogle Scholar
  50. 50.
    J. Labille, N. Fatin-Rouge, J. Buffle: Langmuir 23, 2083 (2007)CrossRefGoogle Scholar
  51. 51.
    H. Zhang, W. Davison: Analytica Chimica Acta 398, 329 (1999)CrossRefGoogle Scholar
  52. 52.
    S. Havlin, D. Ben-Avraham: Adv. Phys. 36, 695 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    B. Mandelbrot: The Fractal Geometry of Nature. (W.H. Freeman 1982)Google Scholar
  54. 54.
    D. Stauffer: Introduction to Percolation Theory. (T. Francis, London 1985)Google Scholar
  55. 55.
    S. Havlin, D. Ben-Avraham: Adv. Phys. 51, 187 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    B. Amsden: Polym. Gels Networks 31, 13 (1998)CrossRefGoogle Scholar
  57. 57.
    N. Fatin-Rouge, K. Wilkinson, J. Buffle: J. Phys. Chem. B 110, 20133 (2006)CrossRefGoogle Scholar
  58. 58.
    E.M. Johnson, D.A. Berk, R.K. Jain, W.M. Deen: Biophys. J. 70, 1017 (1996)ADSCrossRefGoogle Scholar
  59. 59.
    A. Pluen, P. A. Netti, K. J. Rakesh, D. A. Berk: Biophys. J. 77, 542 (1999)CrossRefGoogle Scholar
  60. 60.
    N. Fatin-Rouge, A. Milon, J. Buffle, R.R. Goulet, A. Tessier: J. Phys. Chem. B 107, 12126 (2003)CrossRefGoogle Scholar
  61. 61.
    C. Giddings, E. Kucera, C.P. Russel, M.N. Myers: J. Phys. Chem. 72, 4397 (1968)CrossRefGoogle Scholar
  62. 62.
    S. Alexander, R. Orbach: J. Phys. Lett. 43, L625 (1982)CrossRefGoogle Scholar
  63. 63.
    I. Webman: Physical Review Letters 47, 1496 (1981)ADSCrossRefGoogle Scholar
  64. 64.
    D. Benavraham, S. Havlin: J. Phys. A Mathematical and General 15, L691 (1982)ADSCrossRefGoogle Scholar
  65. 65.
    Y. Gefen, A. Aharony, S. Alexander: Phys. Rev. Lett. 50, 77 (1983)ADSCrossRefGoogle Scholar
  66. 66.
    R. Rammal, G. Toulouse: J. Phys. Lett. 44, L13 (1983)CrossRefGoogle Scholar
  67. 67.
    A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk: Biophys. J. 77, 542 (1999)CrossRefGoogle Scholar
  68. 68.
    M. Rinaudo, I. Roure, M. Milas, A. Malovikova: Internat. J. Poly. Anal. Charact. 4, 57 (1997)CrossRefGoogle Scholar
  69. 69.
    J. Labille, F. Thomas, M. Milas, C. Vanhaverbeke: J. Coll. Interf. Sci. 284, 149 (2005)CrossRefGoogle Scholar
  70. 70.
    R.M. Rosenberg: Principles of Physical Chemistry. (Oxford University Press, New York 1977)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Centre européen de recherche et d’enseignements des géosciences de l’environnement (CEREGE)UMR 6635 CNRS Aix/Marseille UniversitéAix-en-Provence Cedex 4France
  2. 2.Centre européen de recherche et d’enseignements des géosciences de l’environnement (CEREGE)UMR 6635, CNRS/Université d’Aix-MarseilleAix-en-Provence Cedex 4France

Personalised recommendations