Advertisement

Surface Reactivity of Manufactured Nanoparticles

  • Mélanie AuffanEmail author
  • Jérôme Rose
  • Corinne Chanéac
  • Jean-Pierre Jolivet
  • Armand Masion
  • Mark R. Wiesner
  • Jean-Yves Bottero
Chapter

Abstract

Manufactured nanoparticles are usually defined to be any intentionally produced particles with: 1.at least one space dimension in the range 1–100 nm, 2.novel or enhanced properties compared with larger particles of the same chemical composition.

Keywords

Photocatalytic Activity Interfacial Tension Protonation Constant Metal Oxide Nanoparticles Tetrahedral Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Académies des Sciences et Technologies de Paris: Nanoscience, Nanotechnologies. www.academie-sciences.fr, 18 (2004)
  2. 2.
    S.F. Hansen , B.H. Larsen , S.I. Olsen, A. Baun: Categorization framework to aid hazard identification of nanomaterials. Nanotoxicology 1, 243–250 (2007)CrossRefGoogle Scholar
  3. 3.
    Nanoscale Science Engineering and Technology Subcommittee T.C.o.T., National Science and Technology Committee: The National Nanotechnology Initiative Strategy Plan. National Nanotechnology Coordination Office, Arlington, VA (2004)Google Scholar
  4. 4.
    Royal Society of London: Nanoscience, and nanotechnology: Opportunities and uncertainties. www.nanotec.org.uk, 19 (2004)
  5. 5.
    M. Daniel, D. Astruc: Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Inform. 104, 293–346 (2004)Google Scholar
  6. 6.
    M. Haruta: Size- and support-dependency in the catalysis of gold. Catalysis Today 36, 153–166 (1997)CrossRefGoogle Scholar
  7. 7.
    T.K. Sau, A. Pal, T. Pal: Size regime dependent catalysis by gold nanoparticles for the reduction of eosin. J. Phys. Chem. B 105, 9266–9272 (2001)CrossRefGoogle Scholar
  8. 8.
    A.P. Alivisatos: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)ADSCrossRefGoogle Scholar
  9. 9.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003)CrossRefGoogle Scholar
  10. 10.
    K. Dick, T. Dhanasekaran, Z. Zhang, D. Meisel: Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002)CrossRefGoogle Scholar
  11. 11.
    S.L. Lai, J.Y. Guo, V. Petrova, G. Ramanath, L.H. Allen: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, 99–102 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    M. Zhang, M.Y. Efremov, F. Schiettekatte, E.A. Olson, A.T. Kwan, S.L. Lai, T. Wisleder, J.E. Greene, L.H. Allen: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    Z. Wang, Y. Zhao, K. Tait, X. Liao, D. Schiferl, C. Zha, R.T. Downs, J. Qian, Y. Zhu, T. Shen: A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proc. Natl. Acad. Sci. USA 101, 13699–13702 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    J.P.Jolivet,C.Froidefond,A.Pottier,C.Chanéac,S.Cassaignon,E.Tronc,P. Euzen:Size tailoring of oxide nanoparticles by precipitation in aqueous medium. A semi-quantitative modelling. J. Mater. Chem. 14, 3281–3288 (2004)Google Scholar
  15. 15.
    P. Ayyub, V.R. Palkar, S. Chattopadhyay, M. Multani: Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys. Rev. B 51, 6135–6138 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    J.F. Banfield, A. Navrotsky: Nanoparticles and the environment. Reviews in mineralogy and geochemistry. Geochimica et Cosmochimica Acta 67, 1753 (2001)Google Scholar
  17. 17.
    S. Brice-Profeta, M.A. Arrio, E. Tronc, N. Menguy, I. Letard, C. Cartier dit Moulin, M. Nogues, C. Chaneac, J.P. Jolivet, P. Sainctavit: Magnetic order in γ-Fe2O3 nanoparticles: A XMCD study. J. Magn. Magn. Mater. 288, 354–365 (2005)Google Scholar
  18. 18.
    R. Lamber, S. Wetjen, N.I. Jaeger: Size dependence of the lattice parameter of small palladium particles. Phys. Rev. B 51, 10968–10971 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    G. Oberdörster, E. Oberdörster, J. Oberdörster: Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 113, 823–839 (2005)CrossRefGoogle Scholar
  20. 20.
    J.Y. Bottero, J. Rose, M.R. Wiesner: Nanotechnologies: Tools for sustainability in a new wave of water treatment processes. Integrated Environmental Assessment and Management 2, 391–395 (2006)CrossRefGoogle Scholar
  21. 21.
    D.F. Emerich, C.G. Thanos: The pinpoint promise of nanoparticle-based drug delivery and molecular diagnosis. Biomolecular Engineering 23, 171–184 (2006)CrossRefGoogle Scholar
  22. 22.
    A.K. Gupta, M. Gupta: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4051 (2005)CrossRefGoogle Scholar
  23. 23.
    D.A. Pereira de Abreu, P. Paseiro Losada, I. Angulo, J.M. Cruz: Development of new polyolefin films with nanoclays for application in food packaging. European Polymer Journal 43, 2229–2243 (2007)CrossRefGoogle Scholar
  24. 24.
    S.K. Sahoo, V. Labhasetwar: Nanotech approaches to drug delivery and imaging. Drug Discov. Today 8, 1112–1120 (2003)CrossRefGoogle Scholar
  25. 25.
    M. Auffan, W. Achouak, J. Rose, C. Chaneac, D.T. Waite, A. Masion, J. Woicik, M.R. Wiesner, J.Y. Bottero: Relation between the redox state of iron-based nanoparticles and their cytotoxicity towards Escherichia coli. Environ. Sci. Technol. 42, 6730–6735 (2008)Google Scholar
  26. 26.
    M. Auffan, J. Rose, T. Orsiere, M. De Meo, A. Thill, O. Zeyons, O. Proux, A. Masion, P. Chaurand, O. Spalla, A. Botta, M.R. Wiesner, J.Y. Bottero: CeO2 nanoparticles induce DNA damage towards human dermal fibroblasts in vitro. Nanotoxicology 3, 161–171 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Auffan, J. Rose, M.R. Wiesner, J.Y. Bottero: Chemical stability of metallic nanoparticles: A parameter controlling their potential toxicity in vitro. Environmental Pollution 157, 1127–1133 (2009)CrossRefGoogle Scholar
  28. 28.
    J.D. Fortner, D.Y. Lyon, C.M. Sayes, A.M. Boyd, J.C. Falkner, E.M. Hotze, L.B. Alemany, Y.J. Tao, W. Guo, K.D. Ausman, V.L. Colvin, J.B. Hughes: C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol. 39, 4307–4316 (2005)CrossRefGoogle Scholar
  29. 29.
    S. Lanone, J. Boczkowski: Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Curr. Mol. Med. 6, 651–663 (2006)CrossRefGoogle Scholar
  30. 30.
    W.R. Moore, J.M. Genet: Antibacterial activity of gutta-percha cones attributed to the zinc oxide component. Oral Surg. 53, 508–517 (1982)CrossRefGoogle Scholar
  31. 31.
    A. Nel, T. Xia, L. Madler, N. Li: Toxic potential of materials at the nanolevel. Science 311, 622–627 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    E. Oberdörster: Manufactured nanomaterials (fullerene, C60) induce oxidative stress in the brain of juvenile largemouth bass. Environ. Health Perpect. 112, 1058–1062 (2004)CrossRefGoogle Scholar
  33. 33.
    C.M. Sayes, V. Colvin: The differential cytotoxicity of water soluble fullerenes. Nano Lett. 4, 1881–1887 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A.M. Flank: Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physicochemical insight into the cytotoxicity mechanism. Environ. Sci. Technol. 40, 6151–6156 (2006)Google Scholar
  35. 35.
    D.B. Warheit, T.R. Webb, C.M. Sayes, V.L. Colvin, K.L. Reed: Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area. Toxicol. Sci. 91, 227–236 (2006)CrossRefGoogle Scholar
  36. 36.
    M.R. Wiesner, G.V. Lowry, P.J.J. Alvarez: Assessing the risks of manufactured nanomaterials. Environ. Sci. Technol. 40, 4337–4345 (2006)CrossRefGoogle Scholar
  37. 37.
    M. Lahmani, C. Brechignac, P. Houdy: Nanomaterials and Nanochemistry, Springer, Heidelberg, Berlin, New York (2006) Chap. 1Google Scholar
  38. 38.
    L. Pauling: The principles determining the structure of complex ionic crystals. J. Am. Chem. Soc. 51, 1010–1026 (1929)CrossRefGoogle Scholar
  39. 39.
    T. Hiemstra, P. Venema, W.H.V. Riemsdijk: Intrinsic proton affinity of reactive surface groups of metal (hydr)oxides: The bond valence principle. J. Coll. Interf. Sci. 184, 680–692 (1996)CrossRefGoogle Scholar
  40. 40.
    J.P. Jolivet, C. Chaneac, E. Tronc: Iron oxide chemistry. From molecular clusters to extended solid networks. Chem. Commun. 481–487 (2004)Google Scholar
  41. 41.
    A.W. Adamson, A.P. Gast: Physical Chemistry of Surfaces. John Wiley, New York (1997)Google Scholar
  42. 42.
    J. Turkevitch, P.C. Stevenson, J. Hillier: A study of the nucleation and growth processes in the synthesis of colloidal gold. J. Discuss. Faraday Soc. 11, 55–75 (1951)CrossRefGoogle Scholar
  43. 43.
    A.S. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J.P. Jolivet: Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. Characterization by Raman spectroscopy. J. Mater. Chem. 13, 877–882 (2003)Google Scholar
  44. 44.
    G. Cao: Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London (2004)CrossRefGoogle Scholar
  45. 45.
    P. Euzen, P. Raybaud, X. Krokidis, H. Toulhoat, J.L. Le Loaer, J.P. Jolivet, C. Froidefond: Handbook of Porous Materials. Wiley-VCH, Chichester (2002) pp. 1592–1677Google Scholar
  46. 46.
    D. Chiche: Heterogeneous Catalysts. Elsevier (2006)Google Scholar
  47. 47.
    E. Pelizzetti, N. Serpone: Homogeneous and Heterogeneous Photocatalysis. Reidel Publishing Company, Dordrecht (1986)Google Scholar
  48. 48.
    N. Serpone, E. Pelizzetti: Photocatalysis: Fundamentals and Applications. John Wiley, New York (1989)Google Scholar
  49. 49.
    A. Fujishima: TiO 2 Photocatalysis: Fundamentals and Applications. BKC, Tokyo (1999)Google Scholar
  50. 50.
    A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)ADSCrossRefGoogle Scholar
  51. 51.
    C. Renz: Photoreactions of oxides of titanium, cerium and earth acids. Helv. Chim. Acta 4, 961–968 (1921)CrossRefGoogle Scholar
  52. 52.
    E. Baur, A. Perret: On the action of light on dissolved silver salts in the presence of zinc oxide. Helv. Chim. Acta 7, 910–915 (1924)CrossRefGoogle Scholar
  53. 53.
    A. Fujishima: TiO2 photocatalysis and related surface phenomena. Surface Science Reports 63, 515–582 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    S. Kato, F. Mashio: TiO2 photocatalyzed oxidation of tetraline in liquid phase. J. Chem. Soc. Japan, Indust. Chem. Sect. 67, 1136–1140 (1964)Google Scholar
  55. 55.
    M.R. Ranade, A. Navrotsky, H.Z. Zhang, J.F. Banfield, S.H. Elder, A. Zaban, P.H. Borse, S.K. Kulkarni, G.S. Doran, H.J. Whitfield: Energetics of nanocrystalline TiO2. Proc. Natl. Acad. Sci. USA 99 (Suppl. 2), 6476–6481 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    C.B. Almquist, P. Biswas: Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity. Journal of Catalysis 212, 145–156 (2002)CrossRefGoogle Scholar
  57. 57.
    C.C. Wang, Z. Zhang, J.Y. Ying: Photocatalytic decomposition of halogenated organics over nanocrystalline titania. Nanostructured Materials 9, 583–586 (1997)CrossRefGoogle Scholar
  58. 58.
    N. Serpone, D. Lawless, R. Khairutdinov: Size effects of the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus transitions in this indirect semiconductor? J. Phys. Chem. 99, 16646–16654 (1995)CrossRefGoogle Scholar
  59. 59.
    A.J. Nozik: Photocatalytic Purification and Treatment of Water and Air. Elsevier, Amsterdam (1993)Google Scholar
  60. 60.
    A.L. Linsebigler, G. Lu, J.T. Yates: Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  61. 61.
    M. Hoffmann et al.: Reactive Oxygen Species Generation on Nanoparticulate Material. Environmental Nanotechnology: Applications and Impacts of Nanomaterials. McGraw Hill, New York (2007)Google Scholar
  62. 62.
    S.N. Frank, A.J. Bard: Heterogeneous photocatalytic oxidation of cyanide ion in acqueous solutions at titanium dioxide powder. J. Am. Chem. Soc. 99, 303–304 (1977)CrossRefGoogle Scholar
  63. 63.
    S.N. Frank, A.J. Bard: Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions of semiconductor powders. J. Phys. Chem. 81, 1484–1488 (1977)CrossRefGoogle Scholar
  64. 64.
    M.H. Pérez, G. Peñuela, M.I. Maldonado, O. Malato, P. Fernández-Ibáñez, I. Oller, W. Gernjak, S. Malato: Degradation of pesticides in water using solar advanced oxidation processes. Appl. Catal. B Environ. 64, 272–281 (2006)CrossRefGoogle Scholar
  65. 65.
    I. Oller, W. Gernjak, M.I. Maldonado, L.A. Perez-Estrada, J.A. Sanchez-Perez, S. Malato: Solar photocatalytic degradation of some hazardous water-soluble pesticides at pilot-plant scale. J. Hazard. Mater. 138, 507–517 (2006)CrossRefGoogle Scholar
  66. 66.
    M. Kositzi, I. Poulios, S. Malato, J. Caceres, A. Campos: Solar photocatalytic treatment of synthetic municipal wastewater. Water Res. 38, 1147–1154 (2004)CrossRefGoogle Scholar
  67. 67.
    C. Guillarda, J. Disdiera, C. Monnet, J. Dussaud, S. Malato, J. Blancoc, M.I. Maldonadoa, J.M. Herrmann: Solar efficiency of a new deposited titania photocatalyst: Chlorophenol, pesticide and dye removal applications. Appl. Catal. B Environ. 46, 319–332 (2003)CrossRefGoogle Scholar
  68. 68.
    A.G. Rincón, C. Pulgarin: Field E. coli inactivation in absence and presence of TiO2. Is solar UV dose appropriate parameter to standardization of solar water disinfection? Solar Energy 77, 635–648 (2004)Google Scholar
  69. 69.
    S. Yean, L. Cong, C.T. Yavuz, J.T. Mayo, W.W. Yu, A.T. Kan, V.L. Colvin, M.B. Tomson: Effect of magnetic particle size on adsorption and desorption of arsenite and arsenate. J. Mater. Res. 20, 3255–3264 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    A. Uheida, G. Salazar-Alvarez, E. Bjorkman, Z. Yu, M. Muhammed: Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2 +  from aqueous solution. Journal of Colloid and Interface Science 298, 501–507 (2006)CrossRefGoogle Scholar
  71. 71.
    H.A. Al-Abadleh, V.H. Grassian: Oxide surfaces as environmental interfaces. Surface Science Reports 52, 63–161 (2003)ADSCrossRefGoogle Scholar
  72. 72.
    L. Sigg, P. Behra, G.N. Stumm: Chimie des milieux aquatiques, chimie des eaux naturelles et des interfaces dans l’environnement. Dunod, Paris (2000) pp. 350–390Google Scholar
  73. 73.
    M. Auffan, J. Rose, O. Proux, D. Borschneck, A. Masion, P. Chaurand, J.L. Hazemann, C. Chaneac, J.P. Jolivet, M.R. Wiesner, A. VanGeen, J.Y. Bottero: Enhanced adsorption of arsenic onto nano-maghemites: As(III) as a probe of the surface structure and heterogeneity. Langmuir 24, 3215–3222 (2008)CrossRefGoogle Scholar
  74. 74.
    A.S. Madden, M.F. Hochella, T.P. Luxton: Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2 +  sorption. Geochim. Cosmochim. Acta 70, 4095–4104 (2006)ADSCrossRefGoogle Scholar
  75. 75.
    F. Villieras, L.J. Michot, F. Bardot, M. Chamerois, C. Eypert-Blaison, M. Francois, G. Gerard, J.M. Cases: Surface heterogeneity of minerals. Comptes Rendus Geosciences 334, 597–609 (2002)ADSCrossRefGoogle Scholar
  76. 76.
    A. Manceau: The mechanism of anion adsorption on iron oxides: Evidence for the bonding of arsenate tetrahedra on free Fe(O,OH)6 edges. Geochim. Cosmochim. Acta 59, 3647–3653 (1995)ADSCrossRefGoogle Scholar
  77. 77.
    B.A. Manning, S. Goldberg: Modeling arsenate competitive adsorption on kaolinite, montmorillonite and illite. Clays Clay Miner. 44, 609–623 (1996)CrossRefGoogle Scholar
  78. 78.
    D.M. Sherman, S.R. Randall: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim. Cosmochim. Acta 67, 4223–4230 (2003)ADSCrossRefGoogle Scholar
  79. 79.
    S. Thoral, J. Rose, J.M. Garnier, A. vanGeen, P. Refait, A. Traverse, E. Fonda, D. Nahon, J.Y. Bottero: XAS Study of iron and arsenic speciation during Fe(II) oxidation in the presence of As(III). Environ. Sci. Technol. 39, 9478–9485 (2005)Google Scholar
  80. 80.
    G.A. Waychunas, J.A. Davis, C.C. Fuller: Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH: Re-evaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochim. Cosmochim. Acta 59, 3655–3661 (1995)ADSCrossRefGoogle Scholar
  81. 81.
    G.A. Waychunas, B.A. Rea, C.C. Fuller, J.A. Davis: Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251–2259 (1993)Google Scholar
  82. 82.
    J.V. Lauritsen, J. Kibsgaard, S. Helveg, H. Topsoe, B.S. Clausen, E. Laegsgaard, F. Besenbacher: Size-dependent structure of MoS2 nanocrystals. Nat. Nano. 2, 53–58 (2007)CrossRefGoogle Scholar
  83. 83.
    A.M. Derfus, W.C.W. Chan, S.N. Bhatia: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11–18 (2004)ADSCrossRefGoogle Scholar
  84. 84.
    P. Borm, F.C. Klaessig, T.D. Landry, B. Moudgil, J. Pauluhn, K. Thomas, R. Trottier, S. Wood: Research strategies for safety evaluation of nanomaterials. Part V. Role of dissolution in biological fate and effects of nanoscale particles. Toxicol. Sci. 90, 23–32 (2006)Google Scholar
  85. 85.
    C. Fan, J. Chen, Y. Chen, J. Ji, H.H. Teng: Relationship between solubility and solubility product: The roles of crystal sizes and crystallographic directions. Geochim. Cosmochim. Acta 70, 3820–3829 (2006)ADSCrossRefGoogle Scholar
  86. 86.
    A.L. Rogach, D.V. Talapin, E.V. Shevchenko, A. Kornowski, M. Haase, H. Weller: Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Advanced Functional Materials 12, 653–664 (2002)CrossRefGoogle Scholar
  87. 87.
    D.V. Talapin, A.L. Rogach, M. Haase, H. Weller: Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Rev. B 105, 12278–12285 (2001)Google Scholar
  88. 88.
    A.N. Goldstein, C.M. Echer, A.P. Alivisatos: Melting in semiconductor nanocrystals. Science 256, 1425–1427 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mélanie Auffan
    • 1
    Email author
  • Jérôme Rose
    • 2
  • Corinne Chanéac
    • 3
  • Jean-Pierre Jolivet
    • 4
  • Armand Masion
    • 2
  • Mark R. Wiesner
    • 5
    • 6
  • Jean-Yves Bottero
    • 7
  1. 1.Centre européen de recherche et d’enseignements des géosciences de l’environnement (CEREGE)UMR 6635 CNRS Aix/Marseille UniversitéAix-en-Provence Cedex 4France
  2. 2.Centre européen de recherche et d’enseignements des géosciences de l’environnement (CEREGE)UMR 6635 CNRS Aix/Marseille UniversitéAix-en-Provence Cedex 4France
  3. 3.Laboratoire de chimie de la matière condenséeUMR 7574 UPMC/CNRS Collège de France, Bât. C-DParis Cedex 05France
  4. 4.Laboratoire de chimie de la matière condenséeUMR 7574 UPMC/CNRS, Paris Collège de France, Bât. C-DParis Cedex 05France
  5. 5.Wiesner Research Group Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  6. 6.Center for the Environmental Implications of NanoTechnology (CEINT)DurhamUSA
  7. 7.Centre européen de recherche et d’enseignements des géosciences de l’environnement (CEREGE)UMR 6635, CNRS/Université d’Aix-MarseilleAix-en-Provence Cedex 4France

Personalised recommendations