Advertisement

Technical Risk Prevention in the Workplace

  • Myriam RicaudEmail author
Chapter

Abstract

Nanotechnology has become a major economic and technological issue today. Indeed, nanometric dimensions give matter novel physical, chemical, and biological properties with a host of applications. Nanotechnology is thus having an increasing impact on new and emerging industries, such as computing, electronics, aerospace, and alternative energy supplies, but also on traditional forms of industry such as the automobile, aeronautics, food, pharmaceutical, and cosmetics sectors. In this way, nanotechnology has led to both gradual and radical innovation in many areas of industry: biochips, drug delivery, self-cleaning and antipollution concretes, antibacterial clothing, antiscratch paints, and the list continues [1, 2, 3].

Keywords

Safety Data Sheet Respiratory Protection Aerosol Filter Fume Cupboard Full Face Mask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Lahmani, C. Dupas, P. Houdy (Eds.): Nanoscience. Nanotechnologies and Nanophysics. Springer, Berlin, Heidelberg, New York, 823 p. (2007)Google Scholar
  2. 2.
    M. Lahmani, C. Brechignac, P. Houdy (Eds.): Nanomaterials and Nanochemistry. Springer, Berlin, Heidelberg, New York, 747 p. (2007)Google Scholar
  3. 3.
    W. Luther: Industrial application of nanomaterials: Chances and risks. Technological Analysis. Future Technologies Division of VDI Technologiezentrum GmbH, Düsseldorf, 112 p. (2004)Google Scholar
  4. 4.
    Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies. A consumer product inventory. www.nanotechproject.org/inventories (2009)
  5. 5.
    Lux Research: The Nanotech Report, 5th edn., New York (2008)Google Scholar
  6. 6.
    A.D. Maynard: Nanotechnology: A research strategy for addressing risk. Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies, 45 p. (2006)Google Scholar
  7. 7.
    A.D. Maynard, R.J. Aitken: Assessing exposure to airbone nanomaterials: Current abilities and future requirements. Nanotoxicology 1, 26–41 (2007)CrossRefGoogle Scholar
  8. 8.
    O. Witschger, J.F. Fabriès: Particules ultra-fines et santé au travail. 2. Sources et caractérisation de l’exposition. Hygiène et Sécurité au Travail, Institut national de recherche et de sécurité (INRS) 199, 37–54 (2005)Google Scholar
  9. 9.
    B. Herve-Bazin: Les nanoparticules: un enjeu majeur pour la santé au travail? Les Ulis, EDP Sciences, 701 p. (2007)Google Scholar
  10. 10.
    G. Oberdoster, V. Stone, K. Donaldson: Toxicology of nanoparticles: A historical perspective. Nanotoxicology 1, 2–25 (2007)CrossRefGoogle Scholar
  11. 11.
    P.A.J. Borm, D. Robbins, S. Hauubold, T. Kuhlbuscht, H. Fissan, K. Donaldson, R. Schins, V. Stone, W.G. Kreyling, J. Lademann, J. Krutmann, D. Wahreit, E. Oberdorster: The potential risks of nanomaterials: A review carried out for ECETOC. Particle and Fibre Toxicology 3, 11 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Ostiguy, B. Soucy, G. Lapointe, C. Woods, L. Mena: Les effets sur la santé liés aux nanoparticules, 2nd edn., Institut de recherche Robert-Sauvé en santé et sécurité du travail, Report R-558, 112 p. (2008)Google Scholar
  13. 13.
    P. Hoet, J. Boczkowski: What’s new in nanotoxicology? Brief review of the 2007 literature. Nanotoxicology 2, 171–182 (2008)CrossRefGoogle Scholar
  14. 14.
    Les nanomatériaux: www.inrs.fr/dossiers/nanomateriaux.html, Institut national de recherche et de sécurité (INRS) (2007)
  15. 15.
    M.M. Methner, M.E. Birch, D.E. Evans, B.K. Ku, K. Crouch, M.D. Hoover: Identification and characterization of potential sources of worker exposure to carbon nanofibers during polymer composite laboratory operations. J. Occup. Environ. Hygiene 4, 125–130 (2007)CrossRefGoogle Scholar
  16. 16.
    J.H. Han, E.J. Lee, J.H. Lee, P.K. So, Y.H. Lee, G.N. Bae, S.B. Lee, J.H. Ji, M.H. Cho, I.J. Yu: Monitoring multiwalled carbon nanotube exposure in carbone nanotube research facility. Inhal. Toxicol. 20, 741–749 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Ricaud, F. Roos, D. Lafon: Les nanotubes de carbone: Quels risques, quelle prévention? Hygiène et Sécurité au Travail, Institut national de recherche et de sécurité 210, 43–57 (2008)Google Scholar
  18. 18.
    M. Ricaud: Le point des connaissances sur les silices amorphes, ED 5033. Institut national de recherche et de sécurité, 5 p. (2007)Google Scholar
  19. 19.
    C. Ostiguy, B. Roberge, L. Menard, C.A. Endo: Guide de bonnes pratiques favorisant la gestion des risques liés aux nanoparticules de synthèse. Institut de recherche Robert-Sauvé en santé et sécurité du travail, rapport R-586, 63 p. (2008)Google Scholar
  20. 20.
    Nanotechnologies: Guide to safe handling and disposal of manufactured nanomaterials. British Standards (BSI), 26 p. (2007)Google Scholar
  21. 21.
    Responsible production and use of nanomaterials, Verband der Chemischen Industrie (VCI)/Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (BAuA), 54 p. (2008)Google Scholar
  22. 22.
    P. Schulte, C. Geraci, R. Zumwalde, M. Hoover, E. Kuempel: Occupational risk management of engineered nanoparticles. J. Occup. Environ. Hygiene 5, 239–249 (2008)CrossRefGoogle Scholar
  23. 23.
    ISO TR/12885: Nanotechnologies: Health and safety practices in occupational settings relevant to nanotechnologies (2008)Google Scholar
  24. 24.
    J. Triolet, J. Capois, G. Gautret De La Moriciere, X. Le Quang, J.M. Petit, J.C. Protois, M. Rocher: La conception des laboratoires de chimie. Hygiène et Sécurité au Travail, Institut national de recherche et de sécurité 188, 7–26 (2002)Google Scholar
  25. 25.
    I. Balty, B. Belhanini, H. Clermont, J. C. Cornu, M.A. Jacquet, J.C. Texte: Postes de sécurité microbiologique, postes de sécurité cytotoxique. Hygiène et Sécurité au Travail, Institut national de recherche et de sécurité 193, 37–52 (2003)Google Scholar
  26. 26.
    P. Bombardier: The first solution for nanoparticles handling designed by Faure Ingénierie: Description of the PSPN (poste de sécurité pour particules nanostructurées). Nanosafe, Grenoble (2008)Google Scholar
  27. 27.
    Principes généraux de ventilation, guide pratique de ventilation No. 0, ED 695, Institut national de recherche et de sécurité, 36 p. (1989)Google Scholar
  28. 28.
    S.J. Tsai, E. Ada, J.A.Isaacs, M. J. Ellenbecker: Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J. Nanopart. Res. 11, 147–161 (2009)CrossRefGoogle Scholar
  29. 29.
    Sorbonnes de laboratoire, guide pratique de ventilation No. 18, ED 795, Institut national de recherche et de sécurité, 25 p. (2009)Google Scholar
  30. 30.
    D. Thomas, G. Mouret, S. Calle-Chazelet, D. Bemer: Filtration des nanoparticules: Un problème de taille. Hygiène et Sécurité au Travail, Institut national de recherche et de sécurité 211, 13–19 (2008)Google Scholar
  31. 31.
    D. Thomas: Etude de la filtration des aérosols par des filtres à fibres. Habilitation à diriger des recherches, spécialité Génie des procédés, université Henri-Poincaré (2001)Google Scholar
  32. 32.
    NF EN 1822-5: Filtres à air à très haute efficacité et filtres à air à très faible pénétration (HEPA et ULPA). Part 5: Mesure de l’efficacité de l’élément filtrant (2000)Google Scholar
  33. 33.
    NF EN 1822-1: Filtres à air à très haute efficacité et filtres à air à très faible pénétration (HEPA et ULPA). Part 1: Classification, essais de performance et marquage (1998)Google Scholar
  34. 34.
    H.C. Wang, G. Kasper: Filtration efficiency of nanometer-size aerosol particles. J. Aerosol. Sci. 22, 31–41 (1991)CrossRefGoogle Scholar
  35. 35.
    M. Heim, B.J. Mullins, M. Wild, J. Meyer, G. Kasper: Filtration efficiency of aerosol particles below 20 nanometers. Aerosol Sci. Technol. 39, 782–789 (2005)Google Scholar
  36. 36.
    S.H. Huang, C.W. Chen, C.P. Chang, C.Y. Lai, C.C. Chen: Penetration of 4.5 nm to 10 μm aerosol particles through fibrous filters. J. Aerosol Sci. 38, 719–727 (2007)Google Scholar
  37. 37.
    S.C. Kim, M.S. Harrington, D.Y.H. Pui: Experimental study of nanoparticles penetration through commercial filter media. J. Nanopart. Res. 9, 117–125 (2007)CrossRefGoogle Scholar
  38. 38.
    P. Hure, M. Guimon: Les appareils de protection respiratoire, choix et utilisation, ED 780. Institut national de recherche et de sécurité, 54 p. (2003)Google Scholar
  39. 39.
    NF EN 143: Appareils de protection respiratoire. Filtres à particules. Exigences, essais, marquage (2000)Google Scholar
  40. 40.
    L. Golanski, A. Guillot, F. Tardif: Are conventional protective devices such as fibrous filter media, cartridge for respirators, protective clothing and gloves also efficient for nanoaerosols? Nanosafe 2 (2008)Google Scholar
  41. 41.
    S. Rengasamy, R. Verbofsky, W.P. King, R.E. Shaffer: Nanoparticle penetration through NIOSH-approved N95 filtering-facepiece respirators. J. Internat. Soc. Respir. Protect. 24, 49–59 (2007)Google Scholar
  42. 42.
    C. Mohlmann, J. Pelzer, M. Berges: Efficiency of respiratory filters against ultrafine particles. Third International Symposium on Nanotechnology. Occup. Environ. Health, Taipei (2007)Google Scholar
  43. 43.
    NF EN 149: Appareils de protection respiratoire. Demi-masques filtrants contre les particules. Exigences, essais, marquage (2001)Google Scholar
  44. 44.
    NF EN 12942: Appareils de protection respiratoire. Appareils filtrants à ventilation assistée avec masques complets, demi-masques ou quarts de masques. Exigences, essais, marquage (1998)Google Scholar
  45. 45.
    S.H. Huang, Y.H. Huang, C.W. Chen, C.P. Chang. Nanoparticle penetration through protective clothing materials, Third International Symposium on Nanotechnology. Occup. Environ. Health, Taipei (2007)Google Scholar
  46. 46.
    DIN EN ISO 13982: Protective clothing for use against solid particulates. Part 1: Performance requirements for chemical protective clothing providing protection to the full body against airborne solid particulates. Part 2: Test method of determination of inward leakage of aerosols of fine particles into suits (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut national de recherche et de sécurité (INRS)Paris Cedex 14France

Personalised recommendations