Toxicity of Particles: A Brief History

  • Marie-Claude JaurandEmail author
  • Jean-Claude Pairon


Over the last few decades, a certain number of pathologies have been directly linked to various kinds of inorganic dust affecting subjects exposed to these substances in the workplace. As a consequence, public health authorities have become increasingly interested in determining the effects particles can have on health. But analytical investigations of pollution, along with other evidence, has shown that exposure to dusts is not limited to workers in specific sectors. In fact, it may also affect the population at large, a finding that has led to the setting up of think tanks, closer assessment of different types of pollution, and research specifically devoted to the toxicology of dusts. Note also that the terminology itself has evolved. In particular, the word ‘dust’ has gradually been replaced by ‘particulate matter’, although both terms refer to the solid fraction in aerosols.


Silica Particle Mesothelial Cell Toxicological Study Intratracheal Instillation Rock Wool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.M. Fletcher: Pneumoconiosis of coal-miners. Br. Med. J. 1, 1065–1074 (1948)Google Scholar
  2. 2.
    J.E. Martin: Coal miners’ pneumoconiosis. Am. J. Public Health Nations Health 44, 581–591 (1954)CrossRefGoogle Scholar
  3. 3.
    C. Amoudru: Pneumoconioses: l’exemple des Houillères du Nord Pas-de-Calais (1944–1990). In L’émergence des risques, J.-M. Mur (ed.), pp. 41–71. EDP Sciences, Les Ulis, France (2008)Google Scholar
  4. 4.
    P.W. Bartrip: History of asbestos related disease. Postgrad. Med. J. 80, 72–76 (2004)CrossRefGoogle Scholar
  5. 5.
    R. Lenglet: L’affaire de l’amiante. Editions de la Découverte, Paris (1996)Google Scholar
  6. 6.
    R. Dulbecco: Aventurier du vivant. Plon, Paris (1989)Google Scholar
  7. 7.
    P.J.A. Borm: Particle toxicology: From coal mining to nanotechnology. Inhal. Toxicol. 14, 311–324 (2002)CrossRefGoogle Scholar
  8. 8.
    R.R. Sayers, W.C. Dreessen: Asbestosis. Am. J. Public Health Nations Health 29, 205–214 (1939)CrossRefGoogle Scholar
  9. 9.
    I.J. Selikoff: Historical developments and perspectives in inorganic fiber toxicity in man. Environ. Health Perspect. 88, 269–276 (1990)CrossRefGoogle Scholar
  10. 10.
    K.M. Lynch, W.A. Smith: Pulmonary asbestosis. III. Carcinoma of lung in asbestos-silicosis. Am. J. Cancer 24, 56 (1935)Google Scholar
  11. 11.
    R. Doll: Mortality from lung cancer in asbestos workers. Br. J. Ind. Med. 12, 81–86 (1955)Google Scholar
  12. 12.
    J.C. Wagner, C.A. Sleggs, P. Marchand: Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br. J. Ind. Med. 17, 260–271 (1960)Google Scholar
  13. 13.
    J.C. Wagner: Historical background and perspectives of mesothelioma. In The Mesothelial Cell and Mesothelioma, J.J. Bignon (ed.), pp. 1–17. Marcel Dekker, New York, Basel (1994)Google Scholar
  14. 14.
    INSERM: Effets sur la santé des principaux types d’exposition à l’amiante. Editions INSERM, Paris (1997)Google Scholar
  15. 15.
    M.M. Maule, C. Magnani, P. Dalmasso, D. Mirabelli, F. Merletti, A. Biggeri: Modeling mesothelioma risk associated with environmental asbestos exposure. Environ. Health Perspect. 115, 1066–1071 (2007)CrossRefGoogle Scholar
  16. 16.
    I. Annesi-Maesano, W. Dab: Air pollution and the lung: Epidemiological approach. Med. Sci. (Paris) 22, 589–594 (2006)CrossRefGoogle Scholar
  17. 17.
    W.P. Logan: Mortality in the London fog incident, 1952. Lancet 1, 336–338 (1953)CrossRefGoogle Scholar
  18. 18.
    W.P. Logan: Mortality from fog in London, January, 1956. Br. Med. J. 1, 722–725 (1956)CrossRefGoogle Scholar
  19. 19.
    A. Maitre, V. Bonneterre, L. Huillard, P. Sabatier, R. de Gaudemaris: Impact of urban atmospheric pollution on coronary disease. Eur. Heart J. 27, 2275–2284 (2006)CrossRefGoogle Scholar
  20. 20.
    R.D. Handy, F. von der Kammer, J.R. Lead, M. Hassellov, R. Owen, M. Crane: The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17, 287–314 (2008)CrossRefGoogle Scholar
  21. 21.
    P.J. Borm, D. Robbins, S. Haubold, T. Kuhlbusch, H. Fissan, K. Donaldson, R. Schins, V. Stone, W. Kreyling, J. Lademann, J. Krutmann, D. Warheit, E. Oberdorster: The potential risks of nanomaterials: A review carried out for ECETOC. Part. Fibre Toxicol. 3, 11 (2006)CrossRefGoogle Scholar
  22. 22.
    C. Huitema: Et Dieu créa l’Internet …. Eyrolles, Paris (1995)Google Scholar
  23. 23.
    G.W. Schepers: Lung disease caused by inorganic and organic dust. Dis. Chest. 44, 133–140 (1963)CrossRefGoogle Scholar
  24. 24.
    R.P. Schins, P.J. Borm: Mechanisms and mediators in coal dust induced toxicity: A review. Ann. Occup. Hyg. 43, 7–33 (1999)Google Scholar
  25. 25.
    IARC: Silica, some silicates, coal dusts and para-aramid fibrils. In Monographs on the Evaluation of Carcinogenic Risk of Chemicals to Humans, Vol. 68. IARC Press, Geneva (1997)Google Scholar
  26. 26.
    C. Voisin: Silicose et pneumoconioses à poussières mixtes renfermant de la silice. In Pneumologie, M. Aubier, R. Pariente (eds.), pp. 777–788. Flammarion Médecine-Sciences, Paris (1996)Google Scholar
  27. 27.
    R.A. Cohen, A. Patel, F.H. Green: Lung disease caused by exposure to coal mine and silica dust. Semin. Respir. Crit. Care Med. 29, 651–661 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Pairon, P. Brochard, J. Bignon: Pathologies respiratoires de l’amiante. In Pneumologie, M. Aubier, R. Pariente (eds.), pp. 789–798. Flammarion Médecine-Sciences, Paris (1996)Google Scholar
  29. 29.
    P. de Vuyst: Pathologies respiratoire liées à l’inhalation de particules métalliques. In Pneumologie, M. Aubier, R. Pariente (eds.), pp. 799–802. Flammarion Médecine-Sciences, Paris (1996)Google Scholar
  30. 30.
    I.Y.R. Adamson, J. Bakowska, D.H. Bowden: Mesothelial cell proliferation: A nonspecific response to lung injury associated with fibrosis. Am. J. Respir. Cell. Mol. Biol. 10, 253–258 (1994)Google Scholar
  31. 31.
    E. Crouch: Pathobiology of pulmonary fibrosis. Am. J. Physiol. 259, L159–L184 (1990)Google Scholar
  32. 32.
    W.D. Hardie, S.W. Glasser, J.S. Hagood: Emerging concepts in the pathogenesis of lung fibrosis. Am. J. Pathol. 175, 3–16 (2009)CrossRefGoogle Scholar
  33. 33.
    C.M. Croce: Genetic approaches to the study of the molecular basis of human cancer. Cancer Res. 51, 5015s–5018s (1991)ADSGoogle Scholar
  34. 34.
    A.C. Schinzel, W.C. Hahn: Oncogenic transformation and experimental models of human cancer. Front. Biosci. 13, 71–84 (2008)CrossRefGoogle Scholar
  35. 35.
    D. Hanahan, R.A. Weinberg: The hallmarks of cancer. Cell 100, 57–70 (2000)Google Scholar
  36. 36.
    F. Colotta, P. Allavena, A. Sica, C. Garlanda, A. Mantovani: Cancer-related inflammation, the seventh hallmark of cancer: Links to genetic instability. Carcinogenesis 30, 1073–1081 (2009)CrossRefGoogle Scholar
  37. 37.
    D.G. Albertson, C. Collins, F. McCormick, J.W. Gray: Chromosome aberrations in solid tumors. Nat. Genet. 34, 369–376 (2003)CrossRefGoogle Scholar
  38. 38.
    A. Masuda, T. Takahashi: Chromosome instability in human lung cancers: Possible underlying mechanisms and potential consequences in the pathogenesis. Oncogene 21, 6884–6897 (2002)CrossRefGoogle Scholar
  39. 39.
    K. Robock: Standard quartz dq12 greater than 5 micro m for experimental pneumoconiosis research projects in the Federal Republic of Germany. Ann. Occup. Hyg. 16, 63–66 (1973)CrossRefGoogle Scholar
  40. 40.
    V. Timbrell, J.C. Gibson, I. Webster: UICC standard reference samples of asbestos. Int. J. Cancer 3, 406–408 (1968)CrossRefGoogle Scholar
  41. 41.
    T.W. Hesterberg, G.A. Hart: Synthetic vitreous fibers: A review of toxicology research and its impact on hazard classification. Crit. Rev. Toxicol. 31, 1–53 (2001)CrossRefGoogle Scholar
  42. 42.
  43. 43.
    R.E. Rendall: Physical and chemical characteristics of UICC reference samples. IARC Sci. Publ. 87–96 (1980)Google Scholar
  44. 44.
    I. Baris, L. Simonato, M. Artvinli, F. Pooley, R. Saracci, J. Skidmore, C. Wagner: Epidemiological and environmental evidence of the health effects of exposure to erionite fibres: A four-year study in the Cappadocian region of Turkey. Int. J. Cancer. 39, 10–17 (1987)CrossRefGoogle Scholar
  45. 45.
    AFSSET: Les fibres minérales artificielles siliceuses. Fibres céramiques réfractaires – Fibres de verre à usage spécial. In Avis de l’AFSSET et rapport du groupe d’experts. Agence française de sécurité sanitaire de l’environnement et du travail (2007);
  46. 46.
    M.C. Jaurand, A. Renier, J. Daubriac: Mesothelioma: Do asbestos and carbon nanotubes pose the same health risk? Part. Fibre Toxicol. 6, 16 (2009)CrossRefGoogle Scholar
  47. 47.
    A. Seaton, W. MacNee, K. Donaldson, D. Godden: Particulate air pollution and acute health effects. Lancet 345, 176–178 (1995)CrossRefGoogle Scholar
  48. 48.
    AFSSET: Les nanomatériaux. Effets sur la santé de l’homme et surl’environnement. In Avis de l’AFSSET et rapport du groupe d’experts. Agence française de sécurité sanitaire de l’environnement et du travail (2006);
  49. 49.
    AFSSET: Les nanomatériaux. Sécurité au travail. In Avis de l’AFSSET, rapport d’expertise collective et annexes. Agence française de sécurité sanitaire de l’environnement et du travail (2008);
  50. 50.
    K.M. Reiser, T.W. Hesterberg, W.M. Haschek, J.A. Last: Experimental silicosis. I. Acute effects of intratracheally instilled quartz on collagen metabolism and morphologic characteristics of rat lungs. Am. J. Pathol. 107, 176–185 (1982)Google Scholar
  51. 51.
    E.J. King, G.P. Mohanty, C.V. Harrison, G. Nagelschmidt: Effect of modifications of the surface of quartz on its fibrogenic properties in the lungs of rats. 1. Quartz leached with ringer’s solution. 2. Quartz etched with hydrofluoric acid. 3. Quartz coated with coal extract. AMA. Arch. Ind. Hyg. Occup. Med. 7, 455–477 (1953)Google Scholar
  52. 52.
    E.J. King, B.M. Wright, S.C. Ray, C.V. Harrison: Effect of aluminium on the silicosis-producing action of inhaled quartz. Br. J. Ind. Med. 7, 27–36 (1950)Google Scholar
  53. 53.
    K.E. Driscoll, D.L. Costa, G. Hatch, R. Henderson, G. Oberdorster, H. Salem, R.B. Schlesinger: Intratracheal instillation as an exposure technique for the evaluation of respiratory tract toxicity: Uses and limitations. Toxicol. Sci. 55, 24–35 (2000)CrossRefGoogle Scholar
  54. 54.
    G. Oberdorster, C. Cox, R. Gelein: Intratracheal instillation versus intratracheal inhalation of tracer particles for measuring lung clearance function. Exp. Lung Res. 23, 17–34 (1997)CrossRefGoogle Scholar
  55. 55.
    V. Vu, J.C. Barrett, J. Roycroft, L. Schuman, D. Dankovic, P. Bbaro, T. Martonen, W. Pepelko, D. Lai: Chronic inhalation toxicity and carcinogenicity testing of respirable fibrous particles. Workshop report. Regul. Toxicol. Pharmacol. 24, 202–212 (1996)CrossRefGoogle Scholar
  56. 56.
    R.F. Phalen, R.C. Mannix, R.T. Drew: Inhalation exposure methodology. Environ. Health Perspect. 56, 23–34 (1984)Google Scholar
  57. 57.
    E.M. Thomson, A. Williams, C.L. Yauk, R. Vincent: Impact of nose-only exposure system on pulmonary gene expression. Inhal. Toxicol. 21, 74–82 (2009)CrossRefGoogle Scholar
  58. 58.
    T.W. Hesterberg, G. Chase, C. Axten, W.C. Miller, R.P. Musselman, O. Kamstrup, J. Hadley, D.M. Morscheidt, D.M. Berstein, P. Thevenaz: Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol. Applied Pharmacol. 151, 262–275 (1998)CrossRefGoogle Scholar
  59. 59.
    E.E. McConnell: Synthetic vitreous fibers – Inhalation studies. Regul. Toxicol. Pharmacol. 20, S22–S34 (1994)Google Scholar
  60. 60.
    A. Morgan, J.C. Evans, A. Holmes: Deposition and clearance of inhaled fibrous minerals in the rat. Studies using radioactive tracer techniques. Inhaled Part. 4 Pt 1, 259–274 (1975)Google Scholar
  61. 61.
    P.E. Morrow, F.R. Gibb, H. Beiter, R.W. Kilpper: Pulmonary retention of neutron-activated coal dust. Arch. Environ. Health. 34, 178–183 (1979)Google Scholar
  62. 62.
    P.G. Coin, V.L. Roggli, A.R. Brody: Persistence of long, thin chrysotile asbestos fibers in the lungs of rats. Environ. Health Perspect. 102 (Suppl. 5), 197–199 (1994)Google Scholar
  63. 63.
    A. Morgan, R.J. Talbot, A. Holmes: Significance of fibre length in the clearance of asbestos fibres from the lung. Br. J. Ind. Med. 35, 146–153 (1978)Google Scholar
  64. 64.
    AFSSET: Les fibres courtes et les fibres fines d’amiante. Prise en compte du critère dimensionnel pour la caractérisation des risques sanitaires liés à l’inhalation d’amiante. In Avis de l’AFSSET et rapport d’expertise collective. Agence française de sécurité sanitaire de l’environnement et du travail (2009),
  65. 65.
    F. Bischoff, G. Bryson: Carcinogenesis through solid state surfaces. Prog. Exp. Tumor. Res. 5, 85–133 (1964)Google Scholar
  66. 66.
    F. Pott, F. Huth, K.H. Friedrichs: Tumorigenic effect of fibrous dusts in experimental animals. Environ. Health Perspect. 9, 313–315 (1974)Google Scholar
  67. 67.
    M.F. Stanton, C. Wrench: Mechanisms of mesothelioma induction with asbestos and fibrous glass. J. Natl. Cancer Inst. 48, 797–821 (1972)Google Scholar
  68. 68.
    M. Dorger, A.M. Allmeling, R. Kiefmann, A. Schropp, F. Krombach: Dual role of inducible nitric oxide synthase in acute asbestos-induced lung injury. Free Radic. Biol. Med. 33, 491–501 (2002)CrossRefGoogle Scholar
  69. 69.
    F. Gao, J.R. Koenitzer, J.M. Tobolewski, D. Jiang, J. Liang, P.W. Noble, T.D. Oury: Extracellular superoxide dismutase inhibits inflammation by preventing oxidative fragmentation of hyaluronan. J. Biol. Chem. 283, 6058–6066 (2008)CrossRefGoogle Scholar
  70. 70.
    C. Lecomte, P. Andujar, A. Renier, L. Kheuang, V. Abramowski, L. Mellottee, J. Fleury-Feith, J. Zucman-Rossi, M. Giovannini, M.C. Jaurand: Similar tumor suppressor gene alteration profiles in asbestos-induced murine and human mesothelioma. Cell Cycle. 4, 1862–1869 (2005)CrossRefGoogle Scholar
  71. 71.
    A. Shukla, K.M. Lounsbury, T.F. Barrett, J. Gell, M. Rincon, K.J. Butnor, D.J. Taatjes, G.S. Davis, P. Vacek, K.I. Nakayama, K. Nakayama, C. Steele, B.T. Mossman: Asbestos-induced peribronchiolar cell proliferation and cytokine production are attenuated in lungs of protein kinase C-delta knockout mice. Am. J. Pathol. 170, 140–151 (2007)CrossRefGoogle Scholar
  72. 72.
    D.E. Sullivan, M. Ferris, D. Pociask, A.R. Brody: The latent form of TGFbeta(1) is induced by TNFalpha through an ERK specific pathway and is activated by asbestos-derived reactive oxygen species in vitro and in vivo. J. Immunotoxicol. 5, 145–149 (2008)CrossRefGoogle Scholar
  73. 73.
    C.A. Vaslet, N.J. Messier, A.B. Kane: Accelerated progression of asbestos-induced mesotheliomas in heterozygous p53 (\(+/-\)) mice. Toxicol. Sci. 68, 331–338 (2002)Google Scholar
  74. 74.
    G. Macnab, J.S. Harington: Haemolytic activity of asbestos and other mineral dusts. Nature 214, 522–523 (1967)ADSCrossRefGoogle Scholar
  75. 75.
    M. Gulumian: An update on the detoxification processes for silica particles and asbestos fibers: Successes and limitations. J. Toxicol. Environ. Health B Crit. Rev. 8, 453–483 (2005)CrossRefGoogle Scholar
  76. 76.
    M.C. Jaurand, L. Magne, J. Bignon: Inhibition by phospholipids of haemolytic action of asbestos. Br. J. Ind. Med. 36, 113–116 (1979)Google Scholar
  77. 77.
    S.V. Singh, P.N. Viswanathan, Q. Rahman: Interaction between erythrocyte plasma membrane and silicate dusts. Environ. Health Perspect. 51, 55–60 (1983)CrossRefGoogle Scholar
  78. 78.
    G. Oberdorster, A. Maynard, K. Donaldson, V. Castranova, J. Fitzpatrick, K. Ausman, J. Carter, B. Karn, W. Kreyling, D. Lai, S. Olin, N. Monteiro-Riviere, D. Warheit, H. Yang: Principles for characterizing the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2, 8 (2005)CrossRefGoogle Scholar
  79. 79.
    A. Shukla, M. Ramos-Nino, B. Mossman: Cell signaling and transcription factor activation by asbestos in lung injury and disease. Int. J. Biochem. Cell Biol. 35, 1198–1209 (2003)CrossRefGoogle Scholar
  80. 80.
    R.F. Hamilton, S.A. Thakur, A. Holian: Silica binding and toxicity in alveolar macrophages. Free Radic. Biol. Med. 44, 1246–1258 (2008)CrossRefGoogle Scholar
  81. 81.
    V. Hornung, F. Bauernfeind, A. Halle, E.O. Samstad, H. Kono, K.L. Rock, K.A. Fitzgerald, E. Latz: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008)CrossRefGoogle Scholar
  82. 82.
    J.M. Davis: The effects of chrysotile asbestos dust on lung macrophages maintained in organ culture. An electron-microscope study. Br. J. Exp. Pathol. 48, 379–385 (1967)Google Scholar
  83. 83.
    B.T. Mossman, J.B. Kessler, B.W. Ley, J.E. Craighead: Interaction of crocidolite asbestos with hamster respiratory mucosa in organ culture. Lab. Invest. 36, 131–139 (1977)Google Scholar
  84. 84.
    S. Bryks, F.D. Bertalanffy: Cytodynamic reactivity of the mesothelium. Pleural reaction to chrysotile asbestos. Arch. Environ. Health. 23, 469–472 (1971)Google Scholar
  85. 85.
    M.C. Jaurand, H. Kaplan, J. Thiollet, M.C. Pinchon, J.F. Bernaudin, J. Bignon: Phagocytosis of chrysotile fibers by pleural mesothelial cells in culture. Am. J. Pathol. 94, 529–538 (1979)Google Scholar
  86. 86.
    B. Burmeister, T. Schwerdtle, I. Poser, E. Hoffmann, A. Hartwig, W.U. Muller, A.W. Rettenmeier, N.H. Seemayer, E. Dopp: Effects of asbestos on initiation of DNA damage, induction of DNA-strand breaks, P53-expression and apoptosis in primary, SV40-transformed and malignant human mesothelial cells. Mutat. Res. 558, 81–92 (2004)Google Scholar
  87. 87.
    J.F. Lechner, T. Tokiwa, M. LaVeck, W.F. Benedict, S. Banks-Schlegel, H. Yeager, A. Barnerjee, C.C. Harris: Asbestos-associated chromosomal changes in human mesothelial cells. Proc. Natl. Acad. Sci. USA 82, 3884–3888 (1985)ADSCrossRefGoogle Scholar
  88. 88.
    M.C. Jaurand: Mechanisms of fiber-induced genotoxicity. Environ. Health Perspect. 105, 1073–1084 (1997)Google Scholar
  89. 89.
    P. Andujar, S. Lanone, P. Brochard, J. Boczkowski: Respiratory effects of manufactured nanoparticles. Rev. Mal. Respir. 26, 625–637 (2009)Google Scholar
  90. 90.
    R. Dammann, M. Strunnikova, U. Schagdarsurengin, M. Rastetter, M. Papritz, U.E. Hattenhorst, H.S. Hofmann, R.E. Silber, S. Burdach, G. Hansen: CpG island methylation and expression of tumour-associated genes in lung carcinoma. Eur. J. Cancer 41, 1223–1236 (2005)CrossRefGoogle Scholar
  91. 91.
    K. Husgafvel-Pursiainen, A. Karjalainen, A. Kannio, S. Anttila, T. Partanen, A. Ojajärvi, H. Vainio: Lung cancer and past occupational exposure to asbestos. Role of p53 and K-ras mutations. Am. J. Respir. Cell. Mol. Biol. 20, 667–674 (1999)Google Scholar
  92. 92.
    D.H. Kim, H.H. Nelson, J.K. Wiencke, S. Zheng, D.C. Christiani, J.C. Wain, E.J. Mark, K.T. Kelsey: p16(INK4a) and histology-specific methylation of CpG islands by exposure to tobacco smoke in non-small cell lung cancer. Cancer Res. 61, 3419–3424 (2001)Google Scholar
  93. 93.
    A. Lamy, R. Sesboue, J. Bourguignon, B. Dautreaux, J. Metayer, T. Frebourg, L. Thiberville: Aberrant methylation of the CDKN2a/p16INK4a gene promoter region in preinvasive bronchial lesions: A prospective study in high-risk patients without invasive cancer. Int. J. Cancer 100, 189–193 (2002)CrossRefGoogle Scholar
  94. 94.
    H.H. Nelson, D.C. Christiani, J.K. Wiencke, E.J. Mark, J.C. Wain, K.T. Kelsey: k-ras mutation and occupational asbestos exposure in lung adenocarcinoma: Asbestos-related cancer without asbestosis. Cancer Res. 59, 4570–4573 (1999)Google Scholar
  95. 95.
    A.G. Heppleston: Pulmonary toxicology of silica, coal and asbestos. Environ. Health Perspect. 55, 111–127 (1984)CrossRefGoogle Scholar
  96. 96.
    B. Fubini: Surface chemistry and quartz hazard. Ann. Occup. Hyg. 42, 521–530 (1998)Google Scholar
  97. 97.
    T. Nash, A.C. Allison, J.S. Harington: Physico-chemical properties of silica in relation to its toxicity. Nature 210, 259–261 (1966)ADSCrossRefGoogle Scholar
  98. 98.
    B. Fubini, A. Hubbard: Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation by silica in inflammation and fibrosis. Free Radic. Biol. Med. 34, 1507–1516 (2003)CrossRefGoogle Scholar
  99. 99.
    V. Vallyathan, J.H. Kang, K. Van Dyke, N.S. Dalal, V. Castranova: Response of alveolar macrophages to in vitro exposure to freshly fractured versus aged silica dust: The ability of Prosil 28, an organosilane material, to coat silica and reduce its biological reactivity. J. Toxicol. Environ. Health 33, 303–315 (1991)CrossRefGoogle Scholar
  100. 100.
    M. Gulumian: The role of oxidative stress in diseases caused by mineral dusts and fibres: Current status and future of prophylaxis and treatment. Mol. Cell. Biochem. 196, 69–77 (1999)CrossRefGoogle Scholar
  101. 101.
    V. Castranova: Role of nitric oxide in the progression of pneumoconiosis. Biochemistry 69, 32–37 (2004)Google Scholar
  102. 102.
    S. Zhu, M. Manuel, S. Tanaka, N. Choe, E. Kagan, S. Matalon: Contribution of reactive oxygen and nitrogen species to particulate-induced lung injury. Environ. Health Perspect. 106 (Suppl. 5), 1157–1163 (1998)Google Scholar
  103. 103.
    B.T. Mossman, K.M. Lounsbury, S.P. Reddy: Oxidants and signaling by mitogen-activated protein kinases in lung epithelium. Am. J. Respir. Cell. Mol. Biol. 34, 666–669 (2006)CrossRefGoogle Scholar
  104. 104.
    I.Y.R. Adamson, H.L. Letourneau, D.H. Bowden: Comparison of alveolar and interstitial macrophages in fibroblast stimulation after silica and long or short asbestos. Lab. Invest. 64, 339–344 (1991)Google Scholar
  105. 105.
    S.C. Benson, J.C. Belton, L.G. Scheve: Regulation of lung fibroblast proliferation and collagen synthesis by alveolar macrophages in experimental silicosis. I. Effect of macrophage conditioned medium from silica instilled rats. J. Environ. Pathol. Toxicol. Oncol. 7, 87–97 (1986)Google Scholar
  106. 106.
    J.S. Harington: Fibrogenesis. Environ. Health Perspect. 9, 271–279 (1974)CrossRefGoogle Scholar
  107. 107.
    M.C. Jaurand, F. Levy: Effets cellulaires et moléculaires de l’amiante. Med. Sci. 15, 1370–1378 (1999)Google Scholar
  108. 108.
    S. Mohr, G. Keith, B. Rihn: Amiante et mésothéliome malin: Aspects moléculaires, cellulaires et physiopathologiques. Bull. Cancer. 92, 959–976 (2005)Google Scholar
  109. 109.
    A.B. Kane: Mechanisms of mineral fibre carcinogenesis. In Mechanisms of Fibre Carcinogenesis, A.B. Kane, P. Boffetta, R. Saracci, J.D. Wilboum (eds.), pp. 11–34. IARC Scientific Publications, no. 140 (1999)Google Scholar
  110. 110.
    D. Upadhyay, D.W. Kamp: Asbestos-induced pulmonary toxicity: Role of DNA damage and apoptosis. Exp. Biol. Med. 228, 650–659 (2003)Google Scholar
  111. 111.
    J. Wu, W. Liu, K. Koenig, S. Idell, V.C. Broaddus: Vitronectin adsorption to chrysotile asbestos increases fiber phagocytosis and toxicity for mesothelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 279, L916–L923 (2000)Google Scholar
  112. 112.
    B.A. Cortez, G.M. Machadosantelli: Chrysotile effects on human lung cell carcinoma in culture: 3D reconstruction and DNA quantification by image analysis. BMC Cancer 8, 181 (2008)CrossRefGoogle Scholar
  113. 113.
    C.G. Jensen, M. Watson: Inhibition of cytokinesis by asbestos and synthetic fibres. Cell Biol. Int. 23, 829–840 (1999)CrossRefGoogle Scholar
  114. 114.
    C.G. Jensen, L.C.W. Jensen, C.L. Rieder, R.W. Cole, J.G. Ault: Long crocidolite asbestos fibers cause polyploidy by sterically blocking cytokinesis. Carcinogenesis 17, 2013–2021 (1996)CrossRefGoogle Scholar
  115. 115.
    R.P. Schins: Mechanisms of genotoxicity of particles and fibers. Inhal. Toxicol. 14, 57–78 (2002)ADSCrossRefGoogle Scholar
  116. 116.
    M. Kannerstein, J. Churg: Mesothelioma in man and experimental animals. Environ. Health Perspect. 34, 31–36 (1980)CrossRefGoogle Scholar
  117. 117.
    S. Toyokuni: Mechanisms of asbestos-induced carcinogenesis. Nagoya J. Med. Sci. 71, 1–10 (2009)Google Scholar
  118. 118.
    J.C. Barrett, P. Lamb, R.W. Wiseman: Multiple mechanisms for the carcinogenic effects of asbestos and other mineral fibres. Environ. Health Perspect. 81, 81–92 (1989)CrossRefGoogle Scholar
  119. 119.
    F. Stanton, M. Layard, A. Tegeris, E. Miller, M. May, E. Kent: Tumorigenicity of fibrous glass: Pleural response in the rat in relation to fiber dimension. J. Natl. Cancer Inst. 58, 587–603 (1977)Google Scholar
  120. 120.
    J.D. Appel, T.M. Fasy, D.S. Kohtz, J.D. Kohtz, E.M. Johnson: Asbestos fibers mediate transformation of monkey cells by exogenous plasmid DNA. Proc. Natl. Acad. Sci. USA 85, 7670–7674 (1988)ADSCrossRefGoogle Scholar
  121. 121.
    G.R. Dubes, L.R. Mack: Asbestos-mediated transfection of mammalian cell cultures. In Vitro Cell Dev. Biol. 24, 175–182 (1988)CrossRefGoogle Scholar
  122. 122.
    N. Yoshida, T. Ikeda, T. Yoshida, T. Sengoku, K. Ogawa: Chrysotile asbestos fibers mediate transformation of Escherichia coli by exogenous plasmid DNA. FEMS Microbiol. Lett. 195, 133–137 (2001)CrossRefGoogle Scholar
  123. 123.
    P. Gerde, P. Scholander: A hypothesis concerning asbestos carcinogenicity: The migration of lipophilic carcinogens in adsorbed lipid bilayers. Ann. Occup. Hyg. 31, 1–6 (1987)CrossRefGoogle Scholar
  124. 124.
    I.J. Selikoff, E.C. Hammond: Asbestos and smoking. JAMA 242, 458–459 (1979)Google Scholar
  125. 125.
    G. Monchaux, J. Bignon, M.C. Jaurand, J. Lafuma, P. Sebastien, R. Masse, A. Hirsch, J. Goni: Mesotheliomas in rats following inoculation with acid-leached chrysotile asbestos and other mineral fibres. Carcinogenesis 2, 229–236 (1981)CrossRefGoogle Scholar
  126. 126.
    J.M. Davis: Further observations on the ultrastructure and chemistry of the formation of asbestos bodies. Exp. Mol. Pathol. 13, 346–358 (1970)CrossRefGoogle Scholar
  127. 127.
    C.L. Fattman, R.J. Tan, J.M. Tobolewski, T.D. Oury: Increased sensitivity to asbestos-induced lung injury in mice lacking extracellular superoxide dismutase. Free Radic. Biol. Med. 40, 601–607 (2006)CrossRefGoogle Scholar
  128. 128.
    B.H. Rihn, S. Mohr, S.A. McDowell, S. Binet, J. Loubinoux, F. Galateau, G. Keith, G.D. Leikauf: Differential gene expression in mesothelioma. FEBS Lett. 480, 95–100 (2000)CrossRefGoogle Scholar
  129. 129.
    K. Unfried, C. Schürkes, J. Abel: Distinct spectrum of mutations induced by crocidolite asbestos: Clue for 8-hydroxydeoxyguanosine-dependent mutagenesis in vivo. Cancer Res. 62, 99–104 (2002)Google Scholar
  130. 130.
    J. Fleury-Feith, C. Lecomte, A. Renier, M. Matrat, L. Kheuang, V. Abramowski, F. Levy, A. Janin, M. Giovannini, M.C. Jaurand: Hemizygosity of Nf2 is associated with increased susceptibility to asbestos-induced peritoneal tumours. Oncogene 22, 3799–3805 (2003)CrossRefGoogle Scholar
  131. 131.
    A. De Rienzo, J.R. Testa: Recent advances in the molecular analysis of human malignant mesothelioma. Clin. Ther. 151, 433–438 (2000)Google Scholar
  132. 132.
    J. Topinka, P. Loli, M. Dusinska, M. Hurbankova, Z. Kovacikova, K. Volkovova, A. Kazimirova, M. Barancokova, E. Tatrai, T. Wolff, D. Oesterle, S.A. Kyrtopoulos, P. Georgiadis: Mutagenesis by man-made mineral fibres in the lung of rats. Mutat. Res. 595, 174–183 (2006)Google Scholar
  133. 133.
    IARC: Man-made mineral fibres. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 81 (2002)Google Scholar
  134. 134.
    INSERM: Effets sur la santé des fibres de substitution à l’amiante. Report on behalf of the Direction générale de la santé and the Direction des relations du travail (1999)Google Scholar
  135. 135.
    B. Hervé-Bazin: Les Nanoparticules – Un enjeu pour la santé au travail? EDP Sciences, Les Ulis (2007)Google Scholar
  136. 136.
    F. Prosie, F.X. Lesage, F. Deschamps: Nanoparticles: Structures, utilizations and health impacts. Presse Med. 37, 1431–1437 (2008)CrossRefGoogle Scholar
  137. 137.
    A.A. Shvedova, E.R. Kisin, D. Porter, P. Schulte, V.E. Kagan, B. Fadeel, V. Castranova: Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: Two faces of Janus? Pharmacol. Ther. 121, 192–204 (2009)CrossRefGoogle Scholar
  138. 138.
    V. Stone, H. Johnston, M.J. Clift: Air pollution, ultrafine and nanoparticle toxicology: Cellular and molecular interactions. IEEE Trans. Nanobioscience 6, 331–340 (2007)CrossRefGoogle Scholar
  139. 139.
    S.T. Stern, S.E. McNeil: Nanotechnology safety concerns revisited. Toxicol. Sci. 101, 4–21 (2008)Google Scholar
  140. 140.
    N. Singh, B. Manshian, G.J. Jenkins, S.M. Griffiths, P.M. Williams, T.G. Maffeis, C.J. Wright, S.H. Doak: NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials. 30, 3891–3914 (2009)CrossRefGoogle Scholar
  141. 141.
    N.S. Wang, M.C. Jaurand, L. Magne, L. Kheuang, M.C. Pinchon, J. Bignon: The interactions between asbestos fibers and metaphase chromosomes of rat pleural mesothelial cells in culture. A scanning and transmission electron microscopic study. Am. J. Pathol. 126, 343–349 (1987)Google Scholar
  142. 142.
    M. Yegles, L. Saint-Etienne, A. Renier, X. Janson, M.C. Jaurand: Induction of metaphase and anaphase/telophase abnormalities by asbestos fibers in rat pleural mesothelial cells in vitro. Am. J. Respir. Cell. Mol. Biol. 9, 186–191 (1993)Google Scholar
  143. 143.
    M.C. Jaurand: Etude critique du rôle des paramètres physiques dans l’activité biologique. In Les Nanoparticules – Un enjeu pour la santé au travail? B. Hervé-Bazin (ed.), pp. 530–560, EDP Sciences, Les Ulis (2007)Google Scholar
  144. 144.
    N.R. Jacobsen, P. Moller, K.A. Jensen, U. Vogel, O. Ladefoged, S. Loft, H. Wallin: Lung inflammation and genotoxicity following pulmonary exposure to nanoparticles in ApoE − / − mice. Part. Fibre Toxicol. 6, 2 (2009)CrossRefGoogle Scholar
  145. 145.
    A. Poma, M.L. Di Giorgio: Toxicogenomics to improve comprehension of the mechanisms underlying responses of in vitro and in vivo systems to nanomaterials: A review. Curr. Genomics 9, 571–585 (2008)CrossRefGoogle Scholar
  146. 146.
    R. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi, V. Cogliano: Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol. 7, 295–296 (2006)CrossRefGoogle Scholar
  147. 147.
    V.J. Cogliano, R.A. Baan, K. Straif, Y. Grosse, B. Secretan, F. El Ghissassi: Use of mechanistic data in IARC evaluations. Environ. Mol. Mutagen. 49, 100–109 (2008)CrossRefGoogle Scholar
  148. 148.
    Directive 97/69/CE of the Commission of 5 December 1997 carrying the twenty-third adaptation to the technical progress of the directive 67/548/CEE of the Council, concerning the reconciliation of legislative arrangements relating to the classification, packaging, and labelling of hazardous substances, (1997)Google Scholar
  149. 149.
    D.L. Maxim, C.P. Yu, G. Oberdorster, M.J. Utell: Quantitative risk analyses for RCF: Survey and synthesis. Regul. Toxicol. Pharmacol. 38, 400–416 (2003)CrossRefGoogle Scholar
  150. 150.
    S.H. Moolgavkar, E.G. Luebeck, J. Turim, R.C. Brown: Lung cancer risk associated with exposure to man-made fibers. Drug Chem. Toxicol. 23, 223–242 (2000)CrossRefGoogle Scholar
  151. 151.
    S.H. Moolgavkar, E.G. Luebeck, J. Turim, L. Hanna: Quantitative assessment of the risk of lung cancer associated with occupational exposure to refractory ceramic fibers. Risk Anal. 19, 599–611 (1999)Google Scholar
  152. 152.
    K. Donaldson, P.J. Borm, V. Castranova, M. Gulumian: The limits of testing particle-mediated oxidative stress in vitro in predicting diverse pathologies; relevance for testing of nanoparticles. Part. Fibre Toxicol. 6, 13 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institut national de la santé et de la recherche médicale (INSERM U674)ParisFrance
  2. 2.Institut National de la Santé et de la Recherche Médicale (INSERM U955)Groupe Hospitalier Universitaire Albert Chenevier–Henri MondorCréteil CedexFrance

Personalised recommendations