Skip to main content

Prior Knowledge in Learning Finite Parameter Spaces

  • Conference paper
Formal Grammar (FG 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5591))

Included in the following conference series:

  • 661 Accesses

Abstract

We propose a new framework for computational analysis of language acquisition in a finite parameter space, for instance, in the “principles and parameters” approach to language. The prior knowledge multi-armed bandit algorithm abstracts the idea of a casino of slot machines in which a player has to play machines in order to find out how good they are, but where he has some prior knowledge that some machines are likely to have similar rates of reward. Each grammar is represented as an arm of a bandit machine with the mean-reward function drawn from a Gaussian Process specified by a covariance function between grammars. We test our algorithm on a ten-parameter space and show that the number of iterations required to identify the target grammar is much smaller than the number of all the possible grammars that the learner would have to explore if he was searching exhaustively the entire parameter space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning (47), 235–256 (2002)

    Google Scholar 

  2. Bubeck, S., Munos, R., Stoltz, G., Szepesvari, S.: Online optimization in x-armed bandits. In: Proceedings of NIPS (2008)

    Google Scholar 

  3. Chomsky, N.: Aspects of the Theory of Syntax. MIT Press, Cambridge (1965)

    Google Scholar 

  4. Chomsky, N.: Lectures on government and binding. Foris, Dordrecht (1981)

    Google Scholar 

  5. Davis, S.M.: Syllable onsets as a factor in stress rules. Phonology (5), 1–19 (1988)

    Google Scholar 

  6. Dresher, B.E., Kaye, J.D.: A computational learning model for metrical phonology. Cognition 34, 137–195 (1990)

    Article  Google Scholar 

  7. Gibson, T., Wexler, K.: Triggers. Linguistic Inguiry 25(4), 407–474 (1994)

    Google Scholar 

  8. Gold, E.M.: Language identification in the limit. Information and Control 10(4), 407–454 (1967)

    MathSciNet  MATH  Google Scholar 

  9. Hale, K., Keyser, J.: On argument structure and the lexical expression of syntactic relations. In: Hale, K., Keyser, J. (eds.) The view from building 20, pp. 53–110. MIT Press, Cambridge (1993)

    Google Scholar 

  10. Hayes, B.: Metrical Stress Theory: Principles and Case Studies. The University of Chicago Press, Chicago (1995)

    Google Scholar 

  11. Kleinberg, R., Slivkins, A., Upfal, E.: Multi-Armed Bandits in Metric Spaces. In: Proceedings of STOC (2008)

    Google Scholar 

  12. Niyogi, P., Berwick, R.C.: A language learning model for finite parameter spaces. Cognition 61, 161–193 (1996)

    Article  Google Scholar 

  13. Niyogi, P.: The Computational Nature of Language Learning and Evolution. MIT Press, Cambridge (2006)

    Google Scholar 

  14. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  15. Wang, Y., Audibert, J., Munos, R.: Algorithms for infinitely many-armed bandits. In: Proceedings of NIPS (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Głowacka, D., Dorard, L., Medlar, A., Shawe-Taylor, J. (2011). Prior Knowledge in Learning Finite Parameter Spaces. In: de Groote, P., Egg, M., Kallmeyer, L. (eds) Formal Grammar. FG 2009. Lecture Notes in Computer Science(), vol 5591. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20169-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20169-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20168-4

  • Online ISBN: 978-3-642-20169-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics