Modelling Oscillator Synchronisation During Vertebrate Axis Segmentation

  • Philip J. Murray
  • Philip K. Maini
  • Ruth E. Baker
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 15)


The somitogenesis clock regulates the periodicity with which somites form in the posterior pre-somitic mesoderm. Whilst cell heterogeneity results in noisy oscillation rates amongst constituent cells, synchrony within the population is maintained as oscillators are entrained via juxtracine signalling mechanisms. Here we consider a population of phase-coupled oscillators and investigate how biologically motivated perturbations to the entrained state can perturb synchrony within the population. We find that the ratio of mitosis length to clock period can influence levels of desynchronisation. Moreover, we observe that random cell movement, and hence change of local neighbourhoods, increases synchronisation.



PJM and REB acknowledge the support of the Engineering and Physical Sciences Research Council through an EPSRC First Grant to REB. PKM was partially supported by a Royal Society-Wolfson Research Merit Award.


  1. 1.
    Jiang YJ, Aerne BL, Smithers L, Haddon C, Ish-Horowicz D, Lewis J (2000) Notch signalling and the synchronization of the somite segmentation clock. Nature 408(6811):475–479CrossRefGoogle Scholar
  2. 2.
    Rida PCG, Le Minh N, Jiang YJ (2004) A Notch feeling of somite segmentation and beyond. Dev Biol 265(1):2–22CrossRefGoogle Scholar
  3. 3.
    Horikawa K, Ishimatsu K, Yoshimoto E, Kondo S, Takeda H (2006) Noise-resistant and synchronized oscillation of the segmentation clock. Nature 441(7094):719–723CrossRefGoogle Scholar
  4. 4.
    Mara A, Schroeder J, Chalouni C, Holley SA (2007) Priming, initiation and synchronization of the segmentation clock by delta D and delta C. Nat Cell Biol 9(5):523–530CrossRefGoogle Scholar
  5. 5.
    Mara A, Schroeder J, Holley SA (2008) Two delta C splice-variants have distinct signaling abilities during somitogenesis and midline patterning. Dev Biol 318(1):126–132CrossRefGoogle Scholar
  6. 6.
    Bénazéraf B, Francois P, Baker RE, Denans N, Little CD, Pourquié O (2010) A random cell motility gradient downstream of FGF controls elongation of an amniote embryo. Nature 466(7303):248–252CrossRefGoogle Scholar
  7. 7.
    Uriu K, Morishita Y, Iwasa Y (2010) Random cell movement promotes synchronization of the segmentation clock. Proc Natl Acad Sci U S A 107(11):4979CrossRefGoogle Scholar
  8. 8.
    Mara A, Holley SA (2007) Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends Cell Biol 17(12):593–599CrossRefGoogle Scholar
  9. 9.
    Baker RE, Schnell S, Maini PK (2008) Mathematical models for somite formation. Curr Top Dev Biol Vol. 81 Chapter 6, 183–203Google Scholar
  10. 10.
    Goldbeter A, Pourquié O (2008) Modeling the segmentation clock as a network of coupled oscillations in the Notch. Wnt and FGF signaling pathways. J Theor Biol 252(3):574–585CrossRefGoogle Scholar
  11. 11.
    Hirata H, Yoshiura S, Ohtsuka T, Bessho Y, Harada T, Yoshikawa K, Kageyama R (2002) Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science 298(5594):840–843CrossRefGoogle Scholar
  12. 12.
    Lewis J (2003) Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr Biol 13(16):1398–1408CrossRefGoogle Scholar
  13. 13.
    Rodríguez-González JG, Santillán M, Fowler AC, Mackey MC (2007) The segmentation clock in mice: interaction between the Wnt and Notch signaling pathways. J Theor Biol 248(1):37–47CrossRefGoogle Scholar
  14. 14.
    Santillan M, Mackey MC (2008) A proposed mechanism for the interaction of the segmentation clock and the determination front in somitogenesis. PLoS One 3(2):e1561CrossRefGoogle Scholar
  15. 15.
    Morelli LG, Ares S, Herrgen L, Schröter C, Jülicher F, Oates AC (2009) Delayed coupling theory of vertebrate segmentation. HFSP J 1(3):55–66CrossRefGoogle Scholar
  16. 16.
    Murray PJ, Maini PK, Baker RE (2011) The clock and wavefront model revisited. J Theor Biol 283(1):227–238CrossRefGoogle Scholar
  17. 17.
    Riedel-Kruse IH, Muller C, Oates AC (2007) Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317:1911–1915CrossRefGoogle Scholar
  18. 18.
    Kuramoto Y (1981) Rhythms and turbulence in populations of chemical oscillators. Physica A 106(1–2):128–143MathSciNetCrossRefGoogle Scholar
  19. 19.
    Giudicelli F, Özbudak EM, Wright GJ, Lewis J (2007) Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol 5(6):e150CrossRefGoogle Scholar
  20. 20.
    Kane DA (1998) Cell cycles and development in the embryonic zebrafish. Methods Cell Biol 59:11–26CrossRefGoogle Scholar
  21. 21.
    Osborne JM, Walter A, Kershaw SK, Mirams GR, Fletcher AG, Pathmanathan P, Gavaghan D, Jensen OE, Maini PK, Byrne HM (2010) A hybrid approach to multiscale modelling of cancer. Phil Trans 368, 5013–5028Google Scholar
  22. 22.
    Murray PJ, Edwards CM, Tindall MJ, Maini PK (2009) From a discrete to a continuum model of cell dynamics in one dimension. Phys Rev E 80(3):031912-1–031912-10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Philip J. Murray
    • 1
  • Philip K. Maini
    • 1
  • Ruth E. Baker
    • 1
  1. 1.Centre for Mathematical Biology, Mathematical InstituteUniversity of OxfordOxfordUK

Personalised recommendations