Rules of Thumb for Information Acquisition from Large and Redundant Data

  • Wolfgang Gatterbauer
Conference paper

DOI: 10.1007/978-3-642-20161-5_47

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)
Cite this paper as:
Gatterbauer W. (2011) Rules of Thumb for Information Acquisition from Large and Redundant Data. In: Clough P. et al. (eds) Advances in Information Retrieval. ECIR 2011. Lecture Notes in Computer Science, vol 6611. Springer, Berlin, Heidelberg

Abstract

We develop an abstract model of information acquisition from redundant data. We assume a random sampling process from data which contain information with bias and are interested in the fraction of information we expect to learn as function of (i) the sampled fraction (recall) and (ii) varying bias of information (redundancy distributions). We develop two rules of thumb with varying robustness. We first show that, when information bias follows a Zipf distribution, the 80-20 rule or Pareto principle does surprisingly not hold, and we rather expect to learn less than 40% of the information when randomly sampling 20% of the overall data. We then analytically prove that for large data sets, randomized sampling from power-law distributions leads to “truncated distributions” with the same power-law exponent. This second rule is very robust and also holds for distributions that deviate substantially from a strict power law. We further give one particular family of power-law functions that remain completely invariant under sampling. Finally, we validate our model with two large Web data sets: link distributions to web domains and tag distributions on delicious.com.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wolfgang Gatterbauer
    • 1
  1. 1.Computer Science and EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations