Is a Query Worth Translating: Ask the Users!

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6611)


Users in many regions of the world are multilingual and they issue similar queries in different languages. Given a source language query, we propose query picking which involves finding equivalent target language queries in a large query log. Query picking treats translation as a search problem, and can serve as a translation method in the context of cross-language and multilingual search. Further, given that users usually issue queries when they think they can find relevant content, the success of query picking can serve as a strong indicator to the projected success of cross-language and multilingual search. In this paper we describe a system that performs query picking and we show that picked queries yield results that are statistically indistinguishable from a monolingual baseline. Further, using query picking to predict the effectiveness of cross-language results can have statistically significant effect on the success of multilingual search with improvements over a monolingual baseline. Multilingual merging methods that do not account for the success of query picking can often hurt retrieval effectiveness.


cross-language search multilingual search query translation mining 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darwish, K.: Transliteration Mining with Phonetic Conflation and Iterative Training. In: NEWS Workshop, ACL 2010 (2010)Google Scholar
  2. 2.
    Gao, W., Niu, C., Nie, J.-Y., Zhou, M., Hu, J., Wong, K.-F., Hon, H.-W.: Cross-lingual query suggestion using query logs of different languages. In: SIGIR 2007, pp. 463–470 (2007)Google Scholar
  3. 3.
    Gao, W., Niu, C., Zhou, M., Wong, K.F.: Joint Ranking for Multilingual Web Search. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 114–125. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Gao, W., Niu, C., Nie, J.-Y., Zhou, M., Wong, K.-F., Hon, H.-W.: Exploiting query logs for cross-lingual query suggestions. ACM Trans. Inf. Syst. 28, 1–33 (2010)CrossRefGoogle Scholar
  5. 5.
    He, X.: Using Word-Dependent Transition Models in HMM based Word Alignment for Statistical Machine Translation. In: ACL 2007 2nd SMT Workshop (2007)Google Scholar
  6. 6.
    Kishida, K.: Prediction of performance of cross-language information retrieval using automatic evaluation of translation. Library & Info. Science Research 30(2), 138–144 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Koehn, P., Hoang, H., Birch, A., Callison-Burch, C., Federico, M., Bertoldi, N., Cowan, B., Shen, W., Moran, C., Zens, R., Dyer, C., Bojar, O., Constantin, A., Herbst, E.: Moses: Open Source Toolkit for Statistical Machine Translation. In: ACL 2007, demo. session, Prague, Czech Republic (June 2007)Google Scholar
  8. 8.
    Joachims, T.: Training Linear SVMs in Linear Time. In: Proceedings of the ACM Conference on Knowledge Discovery and Data Mining, KDD (2006)Google Scholar
  9. 9.
    Lee, C.J., Chen, C.H., Kao, S.H., Cheng, P.J.: To translate or not to translate? In: SIGIR 2010 (2010)Google Scholar
  10. 10.
    Lee, Y.S., Papineni, K., Roukos, S., Emam, O., Hassan, H.: Language Model Based Arabic Word Segmentation. In: ACL 2003, pp. 399–406 (2003)Google Scholar
  11. 11.
    Lin, W.C., Chen, H.H.: Merging Mechanisms in Multilingual Information Retrieval. In: Peters, C.A. (ed.) CLEF 2002. LNCS, vol. 2785, pp. 175–186. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Levow, G.A., Oard, D.W., Resnik, P.: Dictionary-based techniques for cross-language information retrieval. Info. Processing and Management Journal 41(3) (May 2005)Google Scholar
  13. 13.
    Metzler, D., Croft, W.B.: Combining the language model and inference network approaches to retrieval. Information Processing and Management 40(5), 735–750 (2004)CrossRefGoogle Scholar
  14. 14.
    Pirkola, A.: The Effects of Query Structure and Dictionary setups in Dictionary-Based Cross-language Information Retrieval. In: SIGIR 1998, pp. 55–63 (1998)Google Scholar
  15. 15.
    Si, L., Callan, J.: CLEF 2005: Multilingual Retrieval by Combining Multiple Multilingual Ranked Lists. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J.F., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 121–130. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Tsai, M.F., Wang, T.Y., Chen, H.H.: A Study of Learning a Merge Model for Multilingual Information Retrieval. In: SIGIR 2008 (2008)Google Scholar
  17. 17.
    Udupa, R., Saravanan, K., Bakalov, A., Bhole, A.: They Are Out There, If You Know Where to Look: Mining Transliterations of OOV Query Terms for Cross-Language Information Retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 437–448. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Voorhees, E.M.: Evaluation by highly relevant documents. In: Proceedings of SIGIR, pp. 74–82 (2001)Google Scholar
  19. 19.
    Wang, J., Oard, D.W.: Combining Bidirectional Translation and Synonymy for Cross-language Information Retrieval. In: SIGIR 2006, pp. 202–209 (2006)Google Scholar
  20. 20.
    Wu, D., He, D., Ji, H., Grishman, R.: A study of using an out-of-box commercial MT system for query translation in CLIR. In: Workshop on Improving non-English Web Searching, CIKM 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Microsoft Innovation Laboratory in CairoEgypt

Personalised recommendations