Skip to main content

Efficient Topological OLAP on Information Networks

  • Conference paper
Database Systems for Advanced Applications (DASFAA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6587))

Included in the following conference series:

Abstract

We propose a framework for efficient OLAP on information networks with a focus on the most interesting kind, the topological OLAP (called “T-OLAP”), which incurs topological changes in the underlying networks. T-OLAP operations generate new networks from the original ones by rolling up a subset of nodes chosen by certain constraint criteria. The key challenge is to efficiently compute measures for the newly generated networks and handle user queries with varied constraints. Two effective computational techniques, T-Distributiveness and T-Monotonicity are proposed to achieve efficient query processing and cube materialization. We also provide a T-OLAP query processing framework into which these techniques are weaved. To the best of our knowledge, this is the first work to give a framework study for topological OLAP on information networks. Experimental results demonstrate both the effectiveness and efficiency of our proposed framework.

This work is supported by Natural Science Foundation of China (NSFC) under grant numbers: 60973002 and 60673113.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Archambault, D., Munzner, T., Auber, D.: TopoLayout: Multilevel graph layout by topological features. IEEE Trans. Vis. Comput. Graph. 13(2), 305–317 (2007)

    Article  Google Scholar 

  2. Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: SIGMOD Conference, pp. 359–370 (1999)

    Google Scholar 

  3. Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: WWW, pp. 595–602 (2004)

    Google Scholar 

  4. Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1) (2006)

    Google Scholar 

  5. Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online analytical processing on graphs. In: Proc. 2008 Int. Conf. Data Mining (ICDM) (2008)

    Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to Algorithms. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.D.: Computing iceberg queries efficiently. In: VLDB, pp. 299–310 (1998)

    Google Scholar 

  8. Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of web communities. IEEE Computer 35, 66–71 (2002)

    Article  Google Scholar 

  9. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: VLDB, pp. 721–732 (2005)

    Google Scholar 

  10. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Disc. 1(1), 29–53 (1997)

    Article  Google Scholar 

  11. Gupta, A., Mumick, I.S. (eds.): Materialized Views: Techniques, Implementations, and Applications. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Trans. Vis. Comput. Graph. 6(1), 24–43 (2000)

    Article  Google Scholar 

  13. Jensen, D., Neville, J.: Data mining in networks. In: Papers of the Symp. Dynamic Social Network Modeling and Analysis. National Academy Press, Washington DC (2002)

    Google Scholar 

  14. Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very large directed graphs. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 595–608. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  16. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws, shrinking diameters and possible explanations. In: Proc. 2005 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2005), Chicago, IL, pp. 177–187 (August 2005)

    Google Scholar 

  17. Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: SIGMOD Conference, pp. 419–432 (2008)

    Google Scholar 

  18. Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS, pp. 849–856 (2001)

    Google Scholar 

  20. Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained association rules. In: SIGMOD Conference, pp. 13–24 (1998)

    Google Scholar 

  21. Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: ICDE, pp. 405–416 (2003)

    Google Scholar 

  22. Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Sparse graph mining with compact matrix decomposition. Stat. Anal. Data Min. 1(1), 6–22 (2008)

    Article  MathSciNet  Google Scholar 

  23. Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: SIGMOD Conference, pp. 567–580 (2008)

    Google Scholar 

  24. Wang, N., Parthasarathy, S., Tan, K.-L., Tung, A.K.H.: CSV: visualizing and mining cohesive subgraphs. In: SIGMOD Conference, pp. 445–458 (2008)

    Google Scholar 

  25. Wei, F.: Tedi: efficient shortest path query answering on graphs. In: SIGMOD 2010: Proceedings of the 2010 International Conference on Management of Data, pp. 99–110. ACM, New York (2010)

    Google Scholar 

  26. Wu, A.Y., Garland, M., Han, J.: Mining scale-free networks using geodesic clustering. In: KDD, pp. 719–724 (2004)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H. (2011). Efficient Topological OLAP on Information Networks. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20149-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20148-6

  • Online ISBN: 978-3-642-20149-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics