Abstract
We propose a framework for efficient OLAP on information networks with a focus on the most interesting kind, the topological OLAP (called “T-OLAP”), which incurs topological changes in the underlying networks. T-OLAP operations generate new networks from the original ones by rolling up a subset of nodes chosen by certain constraint criteria. The key challenge is to efficiently compute measures for the newly generated networks and handle user queries with varied constraints. Two effective computational techniques, T-Distributiveness and T-Monotonicity are proposed to achieve efficient query processing and cube materialization. We also provide a T-OLAP query processing framework into which these techniques are weaved. To the best of our knowledge, this is the first work to give a framework study for topological OLAP on information networks. Experimental results demonstrate both the effectiveness and efficiency of our proposed framework.
This work is supported by Natural Science Foundation of China (NSFC) under grant numbers: 60973002 and 60673113.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Archambault, D., Munzner, T., Auber, D.: TopoLayout: Multilevel graph layout by topological features. IEEE Trans. Vis. Comput. Graph. 13(2), 305–317 (2007)
Beyer, K.S., Ramakrishnan, R.: Bottom-up computation of sparse and iceberg cubes. In: SIGMOD Conference, pp. 359–370 (1999)
Boldi, P., Vigna, S.: The WebGraph framework I: Compression techniques. In: WWW, pp. 595–602 (2004)
Chakrabarti, D., Faloutsos, C.: Graph mining: Laws, generators, and algorithms. ACM Comput. Surv. 38(1) (2006)
Chen, C., Yan, X., Zhu, F., Han, J., Yu, P.S.: Graph OLAP: Towards online analytical processing on graphs. In: Proc. 2008 Int. Conf. Data Mining (ICDM) (2008)
Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (eds.): Introduction to Algorithms. MIT Press, Cambridge (2001)
Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.D.: Computing iceberg queries efficiently. In: VLDB, pp. 299–310 (1998)
Flake, G., Lawrence, S., Giles, C.L., Coetzee, F.: Self-organization and identification of web communities. IEEE Computer 35, 66–71 (2002)
Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: VLDB, pp. 721–732 (2005)
Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Disc. 1(1), 29–53 (1997)
Gupta, A., Mumick, I.S. (eds.): Materialized Views: Techniques, Implementations, and Applications. MIT Press, Cambridge (1999)
Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Trans. Vis. Comput. Graph. 6(1), 24–43 (2000)
Jensen, D., Neville, J.: Data mining in networks. In: Papers of the Symp. Dynamic Social Network Modeling and Analysis. National Academy Press, Washington DC (2002)
Jin, R., Xiang, Y., Ruan, N., Wang, H.: Efficiently answering reachability queries on very large directed graphs. In: SIGMOD 2008: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 595–608. ACM, New York (2008)
Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: Densification laws, shrinking diameters and possible explanations. In: Proc. 2005 ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD 2005), Chicago, IL, pp. 177–187 (August 2005)
Navlakha, S., Rastogi, R., Shrivastava, N.: Graph summarization with bounded error. In: SIGMOD Conference, pp. 419–432 (2008)
Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)
Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: NIPS, pp. 849–856 (2001)
Ng, R.T., Lakshmanan, L.V.S., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained association rules. In: SIGMOD Conference, pp. 13–24 (1998)
Raghavan, S., Garcia-Molina, H.: Representing web graphs. In: ICDE, pp. 405–416 (2003)
Sun, J., Xie, Y., Zhang, H., Faloutsos, C.: Less is more: Sparse graph mining with compact matrix decomposition. Stat. Anal. Data Min. 1(1), 6–22 (2008)
Tian, Y., Hankins, R.A., Patel, J.M.: Efficient aggregation for graph summarization. In: SIGMOD Conference, pp. 567–580 (2008)
Wang, N., Parthasarathy, S., Tan, K.-L., Tung, A.K.H.: CSV: visualizing and mining cohesive subgraphs. In: SIGMOD Conference, pp. 445–458 (2008)
Wei, F.: Tedi: efficient shortest path query answering on graphs. In: SIGMOD 2010: Proceedings of the 2010 International Conference on Management of Data, pp. 99–110. ACM, New York (2010)
Wu, A.Y., Garland, M., Han, J.: Mining scale-free networks using geodesic clustering. In: KDD, pp. 719–724 (2004)
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P.S., Li, H. (2011). Efficient Topological OLAP on Information Networks. In: Yu, J.X., Kim, M.H., Unland, R. (eds) Database Systems for Advanced Applications. DASFAA 2011. Lecture Notes in Computer Science, vol 6587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20149-3_29
Download citation
DOI: https://doi.org/10.1007/978-3-642-20149-3_29
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20148-6
Online ISBN: 978-3-642-20149-3
eBook Packages: Computer ScienceComputer Science (R0)