Advertisement

Database Scalability, Elasticity, and Autonomy in the Cloud

(Extended Abstract)
  • Divyakant Agrawal
  • Amr El Abbadi
  • Sudipto Das
  • Aaron J. Elmore
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6587)

Abstract

Cloud computing has emerged as an extremely successful paradigm for deploying web applications. Scalability, elasticity, pay-per-use pricing, and economies of scale from large scale operations are the major reasons for the successful and widespread adoption of cloud infrastructures. Since a majority of cloud applications are data driven, database management systems (DBMSs) powering these applications form a critical component in the cloud software stack. In this article, we present an overview of our work on instilling these above mentioned “cloud features” in a database system designed to support a variety of applications deployed in the cloud: designing scalable database management architectures using the concepts of data fission and data fusion, enabling lightweight elasticity using low cost live database migration, and designing intelligent and autonomic controllers for system management without human intervention.

Keywords

Cloud computing scalability elasticity autonomic systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amdahl, G.: Validity of the single processor approach to achieving large-scale computing capabilities. In: AFIPS Conference, pp. 483–485 (1967)Google Scholar
  2. 2.
    Amer-Yahia, S., Markl, V., Halevy, A., Doan, A., Alonso, G., Kossmann, D., Weikum, G.: Databases and Web 2.0 panel at VLDB 2007. SIGMOD Rec. 37(1), 49–52 (2008)CrossRefGoogle Scholar
  3. 3.
    Baker, J., Bond, C., Corbett, J., Furman, J., Khorlin, A., Larson, J., Leon, J.M., Li, Y., Lloyd, A., Yushprakh, V.: Megastore: Providing Scalable, Highly Available Storage for Interactive Services. In: CIDR, pp. 223–234 (2011)Google Scholar
  4. 4.
    Bernstein, P.A., Cseri, I., Dani, N., Ellis, N., Kalhan, A., Kakivaya, G., Lomet, D.B., Manner, R., Novik, L., Talius, T.: Adapting Microsoft SQL Server for Cloud Computing. In: ICDE (2011)Google Scholar
  5. 5.
    Bodík, P., Goldszmidt, M., Fox, A.: Hilighter: Automatically building robust signatures of performance behavior for small- and large-scale systems. In: SysML (2008)Google Scholar
  6. 6.
    Bradford, R., Kotsovinos, E., Feldmann, A., Schiöberg, H.: Live wide-area migration of virtual machines including local persistent state. In: VEE, pp. 169–179 (2007)Google Scholar
  7. 7.
    Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A Distributed Storage System for Structured Data. In: OSDI, pp. 205–218 (2006)Google Scholar
  8. 8.
    Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: NSDI, pp. 273–286 (2005)Google Scholar
  9. 9.
    Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform. In: Proc. VLDB Endow., vol. 1(2), pp. 1277–1288 (2008)Google Scholar
  10. 10.
    Curino, C., Jones, E., Popa, R., Malviya, N., Wu, E., Madden, S., Balakrishnan, H., Zeldovich, N.: Relational Cloud: A Database Service for the Cloud. In: CIDR, pp. 235–240 (2011)Google Scholar
  11. 11.
    Curino, C., Zhang, Y., Jones, E.P.C., Madden, S.: Schism: a workload-driven approach to database replication and partitioning. PVLDB 3(1), 48–57 (2010)Google Scholar
  12. 12.
    Das, S., Agarwal, S., Agrawal, D., El Abbadi, A.: ElasTraS: An Elastic, Scalable, and Self Managing Transactional Database for the Cloud. Tech. Rep. 2010-04, CS, UCSB (2010)Google Scholar
  13. 13.
    Das, S., Agrawal, D., El Abbadi, A.: ElasTraS: An Elastic Transactional Data Store in the Cloud. In: USENIX HotCloud (2009)Google Scholar
  14. 14.
    Das, S., Agrawal, D., El Abbadi, A.: G-Store: A Scalable Data Store for Transactional Multi key Access in the Cloud. In: ACM SoCC, pp. 163–174 (2010)Google Scholar
  15. 15.
    Das, S., Nishimura, S., Agrawal, D., El Abbadi, A.: Live Database Migration for Elasticity in a Multitenant Database for Cloud Platforms. Tech. Rep. 2010-09, CS, UCSB (2010)Google Scholar
  16. 16.
    Dean, J.: Talk at the Google Faculty Summit (2010)Google Scholar
  17. 17.
    DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In: SOSP, pp. 205–220 (2007)Google Scholar
  18. 18.
    Duan, S., Thummala, V., Babu, S.: Tuning database configuration parameters with ituned. Proc. VLDB Endow. 2, 1246–1257 (2009)CrossRefGoogle Scholar
  19. 19.
    Elmore, A., Das, S., Agrawal, D., El Abbadi, A.: Zephyr: Live Database Migration for Lightweight Elasticity in Multitenant Cloud Platforms. under submission for reviewGoogle Scholar
  20. 20.
    Ghemawat, S., Gobioff, H., Leung, S.T.: The Google file system. In: SOSP, pp. 29–43 (2003)Google Scholar
  21. 21.
    Gray, J.: Notes on data base operating systems. In: Flynn, M.J., Jones, A.K., Opderbeck, H., Randell, B., Wiehle, H.R., Gray, J.N., Lagally, K., Popek, G.J., Saltzer, J.H. (eds.) Operating Systems. LNCS, vol. 60, pp. 393–481. Springer, Heidelberg (1978)CrossRefGoogle Scholar
  22. 22.
    Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco (1992)zbMATHGoogle Scholar
  23. 23.
    Hamilton, J.: I love eventual consistency but... (April 2010), http://bit.ly/hamilton-eventual
  24. 24.
    HBase: Bigtable-like structured storage for Hadoop HDFS (2010), http://hadoop.apache.org/hbase/
  25. 25.
    HDFS: A distributed file system that provides high throughput access to application data (2010), http://hadoop.apache.org/hdfs/
  26. 26.
    Kung, H.T., Robinson, J.T.: On optimistic methods for concurrency control. ACM Trans. Database Syst. 6(2), 213–226 (1981)CrossRefGoogle Scholar
  27. 27.
    Liu, H., et al.: Live migration of virtual machine based on full system trace and replay. In: HPDC, pp. 101–110 (2009)Google Scholar
  28. 28.
    Obasanjo, D.: When databases lie: Consistency vs. availability in distributed systems (2009), http://bit.ly/4J0Zm
  29. 29.
    The Transaction Processing Performance Council: TPC-C benchmark (Version 5.10.1) (2009)Google Scholar
  30. 30.
    Urgaonkar, B., Rosenberg, A.L., Shenoy, P.J.: Application placement on a cluster of servers. Int. J. Found. Comput. Sci. 18(5), 1023–1041 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Weikum, G., Moenkeberg, A., Hasse, C., Zabback, P.: Self-tuning database technology and information services: from wishful thinking to viable engineering. In: VLDB, pp. 20–31 (2002)Google Scholar
  32. 32.
    Weikum, G., Vossen, G.: Transactional information systems: theory, algorithms, and the practice of concurrency control and recovery. Morgan Kaufmann Publishers Inc., San Francisco (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Divyakant Agrawal
    • 1
  • Amr El Abbadi
    • 1
  • Sudipto Das
    • 1
  • Aaron J. Elmore
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations