• Peter Corke
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 73)


Robot navigation is the problem of guiding a robot towards a goal. The human approach to navigation is to make maps and erect signposts, and at first glance it seems obvious that robots should operate the same way. However many robotic tasks can be achieved without any map at all, using an approach referred to as reactive navigation. For example heading towards a light, following a white line on the ground, moving through a maze by following a wall, or vacuuming a room by following a random path. The robot is reacting directly to its environment: the intensity of the light, the relative position of the white line or contact with a wall. Grey Walter’s tortoise Elsie from page 61 demonstrated “life-like” behaviours - she reacted to her environment and could seek out a light source. Today more than 5 million Roomba vacuum cleaners are cleaning floors without using any map of the rooms they work in. The robots work by making random moves and sensing only that they have made contact with an obstacle.


Robot Navigation Goal Position Occupancy Grid Robot Path Planning Query Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Peter Corke

    There are no affiliations available

    Personalised recommendations