Skip to main content

Properties and Classification of the Tepui Peats

  • Chapter
  • First Online:

Part of the book series: Ecological Studies ((ECOLSTUD,volume 217))

Abstract

In the Guayana Highlands, peats have formed along an elevation gradient spanning roughly from 600 m to 2,800 m a.s.l. They have been studied earlier in the eastern highlands from a paleogeographic point of view using radiocarbon dating and pollen analysis, but little is known about their morphological, physical, and chemical characteristics, and their taxonomic classification. This study reports on the properties of peatsoils that have developed on sandstone–quartzite mesetas (tepuis) and on igneous–metamorphic massifs in the western Guayana Highlands. Chapter 6 describes and discusses the morphological, physical, and chemical properties of the peatsoils together with their spatial variations. Taxonomic classification of the soils is presented and issues related with the classification are discussed. Most physical and chemical properties show moderate to high spatial variability, controlled by the position on the landscape, the drainage conditions, the nature of and depth to bedrock, and differences in the age of the peat materials. Average thickness of the soil profiles above the lithic substratum, including organic and mineral materials, varies from 40 to 150 cm. Peatsoils consist commonly of an Oo–Oi–Oe layer sequence. Root content decreases with soil depth. Lighter colors in the Oi layers indicate a lower degree of decomposition and higher fiber content than in deeper layers. Dry matter increases with soil depth. Unrubbed and rubbed fibers mostly decrease with depth, except in organic soils rich in mineral matter. The mineral content increases with soil depth and ranges from zero to more than 70%. Wet bulk density values vary from 0.54 to 0.78 Mg m−3, while dry bulk density values range from 0.04 to 0.094 Mg m−3 in soils with more than 90% organic matter. Field water content is high (average 1,226%) and tends to decrease with soil depth. Average contents of organic matter by loss on ignition and Walkley–Black are 74 and 28%, respectively. Soils are very acid with pH values of 3.1–5.3. Total acidity decreases with soil depth, while salt-replaceable acidity increases from Oi to Oa layers (3.1–5.6 cmol(+) kg1). The cation exchange capacity by sum of bases plus total acidity varies between 20 and 187 cmol(+) kg−1, and the effective cation exchange capacity determined by sum of bases plus salt-replaceable acidity varies between 2 and 12 cmol(+) kg−1. Both organic and organomineral soils are impoverished in exchangeable Ca, Mg, Na, and K with depth. For the overall organic tier, the relative abundance of exchangeable bases is approximately Ca2+ > Na1+ > K1+ > Mg2+. Most soils classify as Saprists followed by Hemists and Fibrists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andriesse JP (1988) Nature and management of tropical peat soils. FAO Soils Bulletin 59, Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Boelter DH (1969) Physical properties of peats as related to degree of decomposition. Soil Sci Soc Am Proc 33:606–609

    Article  Google Scholar 

  • Boelter DH, Blake GR (1964) Importance of volumetric expressions of water contents of organic soils. Soil Sci Soc Am Proc 28:176–178

    Article  Google Scholar 

  • Bord na Mona (1984) Fuel peat in developing countries. Study Report for the World Bank, Dublin

    Google Scholar 

  • Caldwell PV, Vepraskas MJ, Gregory JD (2007) Physical properties of natural organic soils in Carolina Bays of the Southeastern United States. Soil Sci Soc Am J 71:1051–1057

    Article  CAS  Google Scholar 

  • Chimner RA, Karberg JM (2008) Long-term carbon accumulation in two tropical mountain peatlands, Andes Mountains, Ecuador. Mires and Peat 3: art. 4. http://www.mires-and-peat.net/

  • Coleman NT, Thomas GW (1967) The basic chemistry of soil acidity, chapter 3. In: Soil acidity and liming. Agronomy, vol 12. American Society of Agronomy, Madison, WI, pp 1–41

    Google Scholar 

  • Comerma JA, Sánchez J (1980) Consideraciones sobre el régimen de temperatura del suelo en Venezuela. Actas VII Congreso Latinoamericano de la Ciencia del Suelo. San José

    Google Scholar 

  • CVG Técnica Minera CA (1991) Informe de avance NC20-11-12-15-16: clima, geología, geomorfología, suelos, vegetación. Proyecto Inventario de los Recursos Naturales de la Región Guayana. Corporación Venezolana de Guayana. Ciudad Bolívar

    Google Scholar 

  • D’Amore DV, Lynn WC (2002) Classification of forested Histosols in Southeast Alaska. Soil Sci Soc Am J 66:554–562

    Article  Google Scholar 

  • Davies BE (1974) Loss-on-ignition as an estimate of soil organic matter. Soil Sci Soc Am Proc 38:150–151

    Article  Google Scholar 

  • Driessen PM, Rochimah L (1976) The physical properties of lowland peats from Kalimantan and their significance for land suitability appraisal. In: Research on peat and podzolic soils in Indonesia and their potential for agriculture. Soil Research Institute, Bogor

    Google Scholar 

  • EKONO (1981) Report on energy use of peat. Contribution to U.N. Conference on New and Renewable Sources of Energy. Nairobi

    Google Scholar 

  • FAO (1990) Guidelines for soil description, 3rd edn (revised). Soil Resources, Management and Conservation Service; Land and Water Development Division. FAO, Rome

    Google Scholar 

  • FAO (2006) World reference base for soil resources. A framework for international classification, correlation and communication. World Soil Resources Reports 103. IUSS, ISRIC, FAO, Rome

    Google Scholar 

  • Farnham RS, Finney HR (1965) Classification and properties of organic soils. Adv Agron 17:115–162

    Article  CAS  Google Scholar 

  • Jackson CR, Liew KC, Yule CM (2008) Structural and functional changes with depth in microbial communities in tropical peat swamp forest sediments. Microb Ecol http://dx.doi.org/10.1007/s00248-008-9409-4

  • Jiménez D (1995) Aplicación de la taxonomía de suelos en la caracterización de cuatro suelos orgánicos venezolanos. MSc Thesis, UNELLEZ, Guanare

    Google Scholar 

  • Kamprath EJ, Welch CD (1962) Retention and cation exchange properties of organic matter in coastal plain soils. Soil Sci Soc Am Proc 26:263–268

    Article  CAS  Google Scholar 

  • Katimon A, Melling L (2007) Moisture retention curve of tropical sapric and hemic peat. Malays J Civ Eng 19(1):84–90

    Article  Google Scholar 

  • Lee GB, Bulligton SW, Madison FW (1988) Characteristics of histic materials in Wisconsin as arrayed in four classes. Soil Sci Soc Am Proc 52:1753–1758

    Article  Google Scholar 

  • Lucas RE (1982) Organic soils (Histosols). Formation, distribution, physical and chemical properties, and management for crop production. Research Report 435 (Farm Science), Michigan State University, East Lansing, MI

    Google Scholar 

  • Mohamed M, Padmanabhan E, Mei BLH, Siong WB (2002) The peat soils of Sarawak. STRAPEAT Status Report. Universiti Malaysia Sarawak, Malaysia

    Google Scholar 

  • Nichols DS, Boelter DH (1984) Fiber size distribution, bulk density, and ash content of peats in Minnesota, Wisconsin and Michigan. Soil Sci Soc Am J 48:1320–1328

    Article  Google Scholar 

  • Nogué S, Rull V, Montoya E, Huber O, Vegas-Vilarrúbia T (2009) Paleoecology of the Guayana Highlands (northern South America): Holocene pollen record from the Eruoda-tepui, in the Chimantá massif. Palaeogeogr Palaeoclimatol Palaeoecol 281:165–173

    Article  Google Scholar 

  • Ramos B (1997) Los suelos en las cumbres de las Sierras de Maigualida y Uasadi-Jidi, Guayana venezolana. In: Huber O, Rosales J (eds) Ecología de la cuenca del río Caura, Venezuela. II. Estudios especiales. Scientia Guaianae 7. Caracas, pp 423–440

    Google Scholar 

  • Rull V (1991) Contribución a la paleoecología de Pantepui y la Gran Sabana (Guayana Venezolana): clima, biogeografía y ecología. Scientia Guaianae 2, CVG-EDELCA, Caracas

    Google Scholar 

  • Rull V (2004) An evaluation of the Lost World and the vertical displacement hypotheses in the Chimantá Massif, Venezuelan Guayana. Glob Ecol Biogeogr 13:141–148

    Article  Google Scholar 

  • Rull V (2005) Vegetation and environmental constancy in the Neotropical Guayana Highlands during the last 6000 years? Rev Palaeobot Palynol 135:205–222

    Article  Google Scholar 

  • Satrio AE, Gandaseca S, Ahmed OH, Majid NMA (2009) Effect of precipitation fluctuation on soil carbon storage of a tropical peat swamp forest. Am J Appl Sci 6(8):1484–1488

    Article  CAS  Google Scholar 

  • Schargel R, García P, Jiménez D (2011) Laboratory methods for characterization of peat materials. In: Zinck JA, Huber O (eds) Peatlands of the Western Guayana Highlands, Venezuela, Chap. 5. Springer, Heidelberg

    Google Scholar 

  • Schubert C, Fritz P (1985) Radiocarbon ages of peat, Guayana Highlands (Venezuela). Some paleoclimatic implications. Naturwissenschaften 72:427–429

    Article  CAS  Google Scholar 

  • Schubert C, Fritz P, Aravena R (1994) Late Quaternary paleoenvironmental studies in the Gran Sabana (Venezuelan Guayana Shield). Quatern Int 21:81–90

    Article  Google Scholar 

  • Soil Survey Staff (1993) Soil survey manual. USDA-SCS Agriculture Handbook 18. U.S. Gov. Print. Office, Washington, DC

    Google Scholar 

  • Soil Survey Staff (1999) Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys. Agriculture Handbook 436, 2nd edn. Natural Resources Conservation Service, U.S. Department of Agriculture. Washington, DC

    Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. Natural Resources Conservation Service, U.S. Department of Agriculture. Washington, DC

    Google Scholar 

  • Tie YL, Kueh HS (1979) A review of lowland organic soils of Sarawak. Department of Agriculture, Technical Paper 4, Research Branch, Sarawak, Malaysia

    Google Scholar 

  • Zelazny LW, Carlisle VW (1974) Physical, chemical, elemental, and oxygen-containing functional group analysis of selected Florida Histosols. In: Histosols: their characteristics, classification and use. SSSA Special Publication 6, Soil Science Society of America. Madison, WI, pp 63–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García, P., Schargel, R., Zinck, J.A. (2011). Properties and Classification of the Tepui Peats. In: Zinck, J., Huber, O. (eds) Peatlands of the Western Guayana Highlands, Venezuela. Ecological Studies, vol 217. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20138-7_6

Download citation

Publish with us

Policies and ethics