Skip to main content
  • 829 Accesses

Abstract

This chapter presents the high resolution and high spatial resolution of AEM, including HRTEM, CBED, EDS and EELS. Three kinds of advanced AEMs are briefly introduced, and they are negative C s imaging technique, atomic resolution Z-contrast imaging technique and electron holography, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shindo D, Hiraga K. High-resolution Electron Microscopy for Materials Science. Springer-Verlag, Tokyo, 1998.

    Book  Google Scholar 

  2. Sherwood Dennis. Crystal, X-rays and Proteins. Longman, 1976.

    Google Scholar 

  3. Zhang X F, Zhang Z. Progress in Transmission Elecron Microscopy, Concept and Techniques 1. Springer, 2000.

    Google Scholar 

  4. Zhou N, Wang C Z. Guo Z H, et al. The characterization of phase separations for FeCo-Al2O3 nanogranular films. Materials Letters, 57(15): 2168–2173, 2003.

    Article  CAS  Google Scholar 

  5. Rong Y H, Guo Y X, Hu G X. Characterization of M23C6 carbide precipitated at grain boundaries in a superalloy. Metallography, 22(1): 47–55, 1989.

    Article  CAS  Google Scholar 

  6. Liu Y, Wang R B, Guo X Q, et al. A cross-sectional TEM sample preparation method for films deposited on metallic substrates. Materials Characterization, 58(7): 666–669, 2007.

    Article  CAS  Google Scholar 

  7. Cowley J M, Moodie A F. The scattering of electrons by atoms and crystals. I:a new theoretical approach. Acta Crystallographica, 10: 609–619, 1957.

    Article  CAS  Google Scholar 

  8. Li W, Xu W Z, Wang X D, et al. Measurement of microstructural parameters of nanocrystalline Fe-30 wt.%Ni alloy produced by surface mechanical attrition treatment. Journal of Alloys and Compounds, 474: 546–550, 2009.

    Article  CAS  Google Scholar 

  9. Lu L, Chen X, Huang X, et al. Revealing the maximum strength in nanotwinned copper. Science, 323: 607–610, 2009.

    Article  CAS  Google Scholar 

  10. Wang X Y, Zhang J H. Structure of twin boundaries in Mn-based shape memory alloy: a HRTEM study and the strain energy driving force. Acta Materialia, 55: 5169–5176, 2007.

    Article  CAS  Google Scholar 

  11. Xing H, Sun J. Mechanical twinning and omega transition by 〈111〉 112 shear in a metastable β titanium alloy. Applied Physics Letters, 93(3), Article Number 031908, 2008.

    Google Scholar 

  12. Ogawa K, Kajiwara S. Basic differences between martensitic and bainitic transformations revealed by high-resolution electron microscopy. Materials Science and Engineering A, 438–440: 90–94, 2006.

    Article  Google Scholar 

  13. Howe J M. Comparison of the atomic structure, composition, kinetics and mechanisms of interfacial motion in martensitic, bainitic, massive and precipitation face-centered cubic-hexagonal close-packed phase transformations. Materials Science and Engineering A, 438–440: 35–42, 2006.

    Article  Google Scholar 

  14. Matsuda M, Ii S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A, 393(1–2): 269–274, 2005.

    Article  Google Scholar 

  15. Haguenau F, Hawkes P W, Hutchison J L, et al. Key events in the history of electron microscopy. Microscopy and Microanalysis, 9: 96–138, 2003.

    Article  CAS  Google Scholar 

  16. Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York, 2009.

    Google Scholar 

  17. Gjonnes J, Moodie A F. Extinction conditions in the dynamic theory of electron diffraction. Acta Crystallogr., 19: 65–67, 1965.

    Article  Google Scholar 

  18. Zhang M X, Kelly P M. Determination of carbon content in bainitic ferrite and carbon distribution in austenite by Using CBKLDP. Materials Characterization, 40(3): 159–168, 1998.

    Article  CAS  Google Scholar 

  19. Houdellier F, Roucau C, Casanove M J. Convergent beam electron diffraction for strain determination at the nanoscale. Microelectronic Engineering, 84(3): 464–467, 2007.

    Article  CAS  Google Scholar 

  20. Fitzgerald R, Keil K, Heinrich K F J. Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science, 159(814): 528–530, 1968.

    Article  CAS  Google Scholar 

  21. Castaing R. Application of electron probes to local chemical and crystallographic analysis. Thesis, University of Paris, ONERA Publication, 1951.

    Google Scholar 

  22. Cliff G, Lorimic G W. The quantitative analysis of thin specimens. Journal of Microscopy, 103(2): 203–207, 1975.

    Article  Google Scholar 

  23. Wang X D, Zhong N, Rong Y H, et al. Novel ultrahigh-strength nanolath martensitic steel by quenching-partitioning-tempering process. Int. J. Mater. Res., 24(1): 260–267, 2009.

    Article  CAS  Google Scholar 

  24. Reed S J B. The single-scattering model and spatial resolution in X-ray analysis of thin foils. Ultramicroscopy, 7(4): 405–409, 1982.

    Article  CAS  Google Scholar 

  25. Ziebold T O. Precision and sensitivity in microprobe analysis. J. Anal. Chem., 39:858, 1967.

    Article  CAS  Google Scholar 

  26. Zhu J, Ye H Q, Wang R H, et al. High Spatial Resolution Analytical Electron Microscopy. Beijing press, 1987. (in Chinese)

    Google Scholar 

  27. Tang Y. Quantification of low Mg and Si concentrations and Mg diffusion in Al—a high spatial resolution analytical electron microscopy study. Thesis, Norwegian University of Science and Technology, 1999.

    Google Scholar 

  28. Egerton R F. Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd Ed. Plenum Press, New York, 1996.

    Google Scholar 

  29. Oleshko V P, Murayama M, Howe J M. Use of plasmon spectroscopy to evaluate the mechanical properties of materials at the Nanoscale. Microscopy and Microanalysis, 8(4): 350–364, 2002.

    Article  CAS  Google Scholar 

  30. Howe J M, Oleshko V P. Application of valence electron energy-loss spectroscopy and plasmon energy mapping for determining material properties at the nanoscale. Journal of Electron Microscopy, 53(4):339–351, 2004.

    Article  CAS  Google Scholar 

  31. Fults B, Howe J M. Tansmission Electron Microscopy and Diffractometry of Materials, 3rd Ed. Springer, 2008.

    Google Scholar 

  32. Jia C L, Lentzen M, Urban K. High-resolution transmission electron microscopy using negative spherical aberration. Microscopy and Microanalysis, 10: 174–184, 2004.

    Article  CAS  Google Scholar 

  33. Jia C L, Urban K. Atomic-resolution measurement of oxygen concentration in oxide materials. Science, 303: 2001–2004, 2004.

    Article  CAS  Google Scholar 

  34. Balandin A A, Wang K L. Handbook of Semiconductor Nanostructures and Nanodevices, Vol. 2. American Scientific Publishers, 2006.

    Google Scholar 

  35. Yan Y, Pennycook S J. Direct imaging of local chemical disorder and columnar vacancies in ideal decagonal Al-Ni-Co quasicrystals. Physcal Review Letters, 81(23): 5145–5148, 1998.

    Article  CAS  Google Scholar 

  36. Midgley P A. An introduction to off-axis electron holography. Micron, 32(2): 167–184, 2001.

    Article  Google Scholar 

  37. Ye H Q, Wang Y M. Progresss in Transmission Electron Microscopy. Science Press, Beijing, 2003. (in Chinese)

    Google Scholar 

  38. Ravikumar V, Rodrigues R P, Dravid V P. Direct imaging of spatially varying potential and charge across internal interfaces in solids. Physcal Review Letters, 75: 4063–4066, 1995.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rong, Y. (2012). High Resolution and High Spatial Resolution of Analytical Electron Microscopy. In: Characterization of Microstructures by Analytical Electron Microscopy (AEM). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20119-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20119-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20118-9

  • Online ISBN: 978-3-642-20119-6

Publish with us

Policies and ethics