Skip to main content

Electron Diffraction

  • Chapter
  • 836 Accesses

Abstract

Electron diffraction possesses much shorter wavelength and higher intensity than X-ray diffraction, of which the very short wavelength makes analysis of electron diffraction pattern be simpler, and very high intensity makes a very fine crystal produce a clear diffraction pattern. The geometric condition and physical condition of electron diffraction are described, and basic equations used for analysis of electron diffraction patterns are deduced. Selected area electron diffraction (SAED), as a basic operation, is described in its principle and operating procedure. The method how to determine crystallographic directions on the image of specimen is depicted, namely, the rotation of the image relative the diffraction pattern is considered.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heimendahl M V, Translated by Wolff U E. Electron Microscopy of Materials: An Introduction. Academic Press Inc., New York, 1980.

    Google Scholar 

  2. Williams D B, Carter C B. Transmission Electron Microscopy: A Textbook for Materials Science. Springer, New York, 2009.

    Google Scholar 

  3. Zhou N, Wang Z, Guo Z, et al. The characterization of phase separations for FeCo-Al2O3 nanogranular films. Materials Letters, 57(15): 2168–2173, 2003.

    Article  CAS  Google Scholar 

  4. Liao X, Wang X, Guo Z, et al. Microstructures in a resistance spot welded high strength dual phase steel. Materials Characterization, 61:341–346, 2010.

    Article  CAS  Google Scholar 

  5. Rong Y, Wang Y, Chen X, et al. TEM Investigation of the as-quenched compound layer formed by austenitic nitrocarburizing. Materials Characterization, 41(1): 35–39, 1998.

    Article  CAS  Google Scholar 

  6. Kajiwara S. Stacking disorder in martensites of cobalt and its alloys. Japan Journal of Applied Physics, 9: 385, 1970.

    Article  CAS  Google Scholar 

  7. Wang X D, Huang B X, Rong Y H, et al. Determination of stacking fault probability in FCC Fe-Mn-Si-Al alloy by electron diffraction. Journal of Applied Physics, 101: 093511, 2007.

    Article  Google Scholar 

  8. Rong Y, He G, Chen S, et al. On the methods of beam direction and misorientation angle/axis determination by systematic tilt. Journal of Materials Science and Technology, 15(5): 410–414, 1999.

    CAS  Google Scholar 

  9. Samudra A V, Johari O, Heimendahl M V. Different analyses of the same electron diffraction pattern. Praktische Metallographie, 9(9): 516–524, 1972.

    CAS  Google Scholar 

  10. Wang Y, Rong Y, Chen X, et al. Characterization of γ′-Fe4N precipitates in a compound layer formed by austenitic nitrocarburizing treatment. Materials Characterization, 34(3): 213–216, 1995.

    Article  Google Scholar 

  11. Lu L, Shen Y, Chen X, et al. Ultrahigh strength and high electrical conductivity in copper. Science, 304: 422–426, 2004.

    Article  CAS  Google Scholar 

  12. Huang B X, Wang X D, Wang L, et al. Effect of nitrogen on stacking fault formation probability and mechanical properties of twinning-induced plasticity steels. Metallurgical and Materials Transactions A, 39 A: 717–724, 2008.

    Article  Google Scholar 

  13. Zhang J H, Rong Y H, Hsu T Y (Xu Zuyao). The coupling between first-order martensitic transformation and second-order antiferromagnetic transition in Mn-rich γ-MnFe alloy. Philosophical Magazine, 90 (1–4): 159–168, 2010.

    Article  CAS  Google Scholar 

  14. Hirsch P B, Howie A, Nicholson R B, et al. Electron Microscopy of Thin Crystals, 2nd Ed. Krieger Huntington, New York, 1977.

    Google Scholar 

  15. Thomas G, Goringe M J. Transmission Electron Microscopy of Materials. John Wiley & Sons, New York, 1979.

    Google Scholar 

  16. Nishiyama Z. Martensitic Transformation. Academic Press, New York, 1978.

    Google Scholar 

  17. Guo K X, Ye H Q, Wu K Y. Applications of Electron Diffraction Patterns in Crystallography. Science Press, Beijing, 1983.

    Google Scholar 

  18. Matsuda M, Li S, Kawamura Y, et al. Variation of long-period stacking order structures in rapidly solidified Mg97Zn1Y2 alloy. Materials Science and Engineering A, 393(1–2): 269–274, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rong, Y. (2012). Electron Diffraction. In: Characterization of Microstructures by Analytical Electron Microscopy (AEM). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20119-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20119-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20118-9

  • Online ISBN: 978-3-642-20119-6

Publish with us

Policies and ethics