Abstract
Protecting the environment by saving energy and thus reducing carbon dioxide emissions is one of today’s hottest and most challenging topics. Although the perspective for reducing energy consumption, from ecological and business perspectives is clear, from a technological point of view, the realization especially for mobile systems still falls behind expectations. Novel strategies that allow (software) systems to dynamically adapt themselves at runtime can be effectively used to reduce energy consumption. This paper presents a case study that examines the impact of using an energy management component that dynamically selects and applies the “optimal” sorting algorithm, from an energy perspective, during multi-party mobile communication. Interestingly, the results indicate that algorithmic performance is not key and that dynamically switching algorithms at runtime does have a significant impact on energy consumption.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bardine, A., Foglia, P., Gabrielli, G., Prete, C.A.: Analysis of static and dynamic energy consumption in NUCA caches: initial results. In: Proceedings of the 2007 workshop on MEmory performance: DEaling with Applications, systems and architecture, pp. 105–112. ACM, New York (2007)
Brejová, B.: Analyzing variants of Shellsort. Information Processing Letters 79(5), 223–227 (2001)
Bunse, C., Höpfner, H.: Resource substitution with components — Optimizing Energy Consumption. In: Cordeiro, J., Shishkov, B., Ranchordas, A.K., Helfert, M. (eds.) Proceedings of the 3rd International Conference on Software and Data Technologie, vol. SE/GSDCA/MUSE, pp. 28–35. INSTICC press, Setúbal (2008)
Bunse, C., Höpfner, H., Mansour, E., Roychoudhury, S.: Exploring the Energy Consumption of Data Sorting Algorithms in Embedded and Mobile Environments. In: Proceedings of the 10th International Conference on Mobile Data Management: Systems, Services and Middleware, Taipei, Taiwan, May 18-20, pp. 600–607. IEEE Computer Society Press, Los Alamitos (2009)
Bunse, C., Höpfner, H., Roychoudhury, S., Mansour, E.: Choosing the “best” Sorting Algorithm for Optimal Energy Consumption. In: Proceedings of the 4th International Conference on Software and Data Technologie (ICSOFT 2009), Setúbal, Portugal, July 26-29, vol. 2, pp. 199–206. INSTICC press, Setúbal (2009)
Chen, J.-J., Thiele, L.: Expected system energy consumption minimization in leakage-aware DVS systems. In: Proceeding of the Thirteenth International Symposium on Low Power Electronics and Design, ISLPED 2008, pp. 315–320. ACM, New York (2008)
Feeney, L.M.: An Energy Consumption Model for Performance Analysis of Routing Protocols for Mobile Ad Hoc Networks. Mobile Networks and Applications 6(3), 239–249 (2001)
Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Professional, Reading (1995)
Gurun, S., Nagpurkar, P., Zhao, B.Y.: Energy consumption and conservation in mobile peer-to-peer systems. In: Proceedings of the 1st International Workshop on Decentralized Resource Sharing in Mobile Computing and Networking, MobiShare 2006, pp. 18–23. ACM, New York (2006)
Hoare, C.A.R.: Quicksort. Computer Journal 5(1), 10–15 (1962)
Höpfner, H., Bunse, C.: Resource Substitution for the Realization of Mobile Information Systems. In: Filipe, J., Helfert, M., Shishkov, B. (eds.) Proceedings of the 2nd International Conference on Software and Data Technologie, vol. Software Engineering, pp. 283–289. INSTICC Press, Setúbal (2007)
Höpfner, H., Bunse, C.: Energy Aware Data Management on AVR Micro Controller Based Systems. ACM SIGSOFT Software Engineering Notes 35(3) (May 2010)
Höpfner, H., Bunse, C.: Towards an energy-consumption based complexity classification for resource substitution strategies. In: Balke, W.T., Lofi, C. (eds.) Proceedings of the 22. Workshop on Foundations of Databases (Grundlagen von Datenbanken), Bad Helmstedt, Germany, May 25-28. CEUR Workshop Proceeding, vol. 581 (2010), CEUR-WS.org
Jain, R., Molnar, D., Ramzan, Z.: Towards understanding algorithmic factors affecting energy consumption: switching complexity, randomness, and preliminary experiments. In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing, Workshop on Discrete Algothrithms and Methods for MOBILE Computing and Communications, pp. 70–79. ACM, New York (2005)
Koc, H., Ozturk, O., Kandemir, M., Narayanan, S.H.K., Ercanli, E.: Minimizing energy consumption of banked memories using data recomputation. In: Proceedings of the 2006 International Symposium on Low Power Electronics and Design, ISLPED 2006, pp. 358–362. ACM, New York (2006)
Lafore, R.: Data Structures and Algorithms in Java, 2nd edn. SAMS Publishing, Indianapolis (2002)
Liveris, N., Zhou, H., Banerjee, P.: A dynamic-programming algorithm for reducing the energy consumption of pipelined system-level streaming applications. In: Proceedings of the 2008 Conference on Asia and South Pacific Design Automation, ASP-DAC 2008, Seoul, Korea, pp. 42–48. IEEE Computer Society Press, Los Alamitos (2008)
Ozturk, O., Kandemir, M.: Nonuniform Banking for Reducing Memory Energy Consumption. In: Proceedings of the Conference on Design, Automation and Test in Europe, DATE 2005, pp. 814–819. IEEE Computer Society Press, Washington (2005)
Potlapally, N.R., Ravi, S., Raghunathan, A., Jha, N.K.: A Study of the Energy Consumption Characteristics of Cryptographic Algorithms and Security Protocols. IEEE Transactions on Mobile Computing 5(2), 128–143 (2006)
Seddik-Ghaleb, A., Ghamri-Doudane, Y., Senouci, S.-M.: A performance study of TCP variants in terms of energy consumption and average goodput within a static ad hoc environment. In: Proceedings of the 2006 International Conference on Wireless Communications and Mobile Computing, IWCMC 2006, pp. 503–508. ACM, New York (2006)
Senouci, S.-M., Naimi, M.: New routing for balanced energy consumption in mobile ad hoc networks. In: Proceedings of the 2nd ACM International Workshop on Performance Evaluation of Wireless ad hoc, Sensor, and Ubiquitous Networks, PE-WASUN 2005, Montreal, Quebec, Canada, pp. 238–241. ACM Press, New York (2005)
Singh, H., Singh, S.: Energy consumption of TCP Reno, Newreno, and SACK in multi-hop wireless networks. ACM SIGMETRICS Performance Evaluation Review 30(1), 206–216 (2002)
Sousa, J.P., Balan, R.K., Poladian, V., Garalan, D., Satyanarayanan, M.: User Guidance of Resource-Adaptive Systems. In: Cordeiro, J., Shishkov, B., Ranchordas, A., Helfert, M. (eds.) Proceedings of the Third International Conference on Software and Data Technologies, ICSOFT 2008, vol. SE/MUSE/GSDCA, pp. 36–45. INSTICC Press, Setúbal (2008)
Sun, B., Gao, S.-X., Chi, R., Huang, F.: Algorithms for balancing energy consumption in wireless sensor networks. In: Proceeding of the 1st ACM International Workshop on Foundations of Wireless ad hoc and Sensor Networking and Computing, FOWANC 2008, pp. 53–60. ACM, New York (2008)
Tuan, T., Kao, S., Rahman, A., Das, S., Trimberger, S.: A 90nm low-power FPGA for battery-powered applications. In: Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Programmable Gate Arrays, FPGA 2006, pp. 3–11. ACM, New York (2006)
Wang, L., French, M., Davoodi, A., Agarwal, D.: FPGA dynamic power minimization through placement and routing constraints. EURASIP Journal on Embedded Systems (1), 7 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bunse, C., Höpfner, H., Roychoudhury, S., Mansour, E. (2011). Energy Efficient Data Sorting Using Standard Sorting Algorithms. In: Cordeiro, J., Ranchordas, A., Shishkov, B. (eds) Software and Data Technologies. ICSOFT 2009. Communications in Computer and Information Science, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20116-5_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-20116-5_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-20115-8
Online ISBN: 978-3-642-20116-5
eBook Packages: Computer ScienceComputer Science (R0)