-Micron All Sky Survey. http://pegasus.phast.umass.edu
Andersson, P., Mollerstrand, F.: Zohmg – a large scale data store for aggregated time-series-based data. Master’s thesis, Chalmers University of Technology (2009)
Google Scholar
Andrzejak, R.G., Lehnertz, K., Rieke, C., Mormann, F., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E 64, 061907 (2001)
CrossRef
Google Scholar
Aschenbrenner-Scheibe, R., Maiwald, T., Winterhalder, M., Voss, H.U., Timmer, J., Schulze-Bonhage, A.: How well can epileptic seizures be predicted, an evaluation of a nonlinear method. Brain 126, 2616–2626 (2003)
CrossRef
Google Scholar
Berger, H.: Uber das elektroencephalogramm des menschen (on the electroencephalogram of man). Archiv fiir Psychiatrie und Nervenkrankheiten 87, 527–570 (1929)
CrossRef
Google Scholar
Brinkmann, B.H., Bower, M.R., Stengel, K.A., Worrell, G.A., Stead. M.: Large-scale electrophysiology: Acquisition, compression, encryption, and storage of big data. J. Neurosci. Meth. 180(1), 185–192 (2009)
Google Scholar
Cafarella, M., Cutting, D.: Building nutch: Open source search. In: ACM Queue, April 2004
Google Scholar
Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst. 26(2), 1–26 (2008)
MATH
CrossRef
Google Scholar
Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with ycsb. ACM Symposium on Cloud Computing. ACM, IN, USA (2010)
Google Scholar
Das, K., Bhaduri, K., Arora, S., Griffin, W., Borne, K., Giannella, C., Kargupta, H.: Scalable distributed change detection from astronomy data streams using local, asynchronous eigen monitoring algorithms. In: Proceedings of the SIAM International Conference on Data Mining, Sparks, Nevada, 2009
Google Scholar
Dave, R.: Scaling Astronomy. Oreilly Ignite 4, Boston, MA, September 2008. http://timemachine.iic.harvard.edu/publications/#scaling-astronomy
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. In: Proceedings of the Sixth Symposium on Operating System Design and Implementation, San Francisco, CA, December 2004, pp. 137–150
Google Scholar
Dean, J., Ghemawat, S.: Mapreduce: A flexible data processing tool. Commun. ACM 53(1), 72–77 (2010)
CrossRef
Google Scholar
Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. In: The 19th ACM Symposium on Operating Systems Principles, lake George, NY (2003)
Google Scholar
Graves, S.J., Conover, H., Keiser, K., Ramachandran, R., Redman, S., Rushing, J., Tanner, S.: Mining and Modeling in the Linked Environments for Atmospheric Discovery (LEAD). In: Huntsville Simulation Conference, Huntsville, AL, 19 Oct 2004
Google Scholar
Amazon Elastic Compute Cloud, Amazon EC2. http://aws.amazon.com/ec2/
Amazon Simple Storage Service, Amazon S3. http://aws.amazon.com/s3/
Grape 6. http://grape.mtk.nao.ac.jp/grape/news/ABC/ABC-cuttingedge000602.html
Apache Hadoop. http://hadoop.apache.org/core/
Apache Hbase. http://hbase.apache.org/
Large Hadron Collider, European Organization for Nuclear Research. http://lhc.web.cern.ch/lhc/
Hbase Architecture. http://wiki.apache.org/hadoop/Hbase/HbaseArchitecture
Randy Bryant’s Home Page. http://www.cs.cmu.edu/bryant/
San Diego Supercomputer Center, SDSC. http://www.sdsc.edu/
Hsu, F.H.: Behind Deep Blue: Building the Computer that Defeated the World Chess Champion. Princeton University Press, NJ (2002)
MATH
Google Scholar
Keogh, E.J.: Recent advances in mining time series data. In: PKDD, p. 6 (2005)
Google Scholar
Keogh, E.J.: A decade of progress in indexing and mining large time series databases. In: VLDB, p. 1268 (2006)
Google Scholar
Lin, J., Vlachos, M., Keogh, E., Gunopulos, D.: Iterative incremental clustering of time series. In: Proceedings of the IX Conference on Extending Database Technology (2004)
Google Scholar
Reeves, G., Liu, J., Nath, S., Zhao, F.: Managing massive time series streams with multi-scale compressed trickles. In Proceedings of the 35th Conference on Very Large Data Bases, Lyon, France, 2009
Google Scholar
Shieh, J., Keogh, E.J.: isax: indexing and mining terabyte sized time series. In: KDD, pp. 623–631 (2008)
Google Scholar
Sloan Digital Sky Survey. http://www.sdss.org
The human genome project. http://www.ornl.gov/sci/techresources/HumanGenome/home.shtml
The protein data bank (pdb). http://www.rcsb.org/pdb/Welcome.do
The swiss-prot protein knowledge base. http://www.expasy.org/sprot/
World data center for meterology. http://www.ncdc.noaa.gov/oa/wmo/wdcamet.html
Yankov, D., Keogh, E.J., Rebbapragada, U.: Disk aware discord discovery: Finding unusual time series in terabyte sized datasets. In: ICDM, pp. 381–390 (2007)
Google Scholar