Skip to main content

The Role of Cognitive Map on Influencing Decision Makers’ Semantic and Syntactic Comprehension, and Inferential Problem Solving Performance

  • Conference paper
  • 1337 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 6592)

Abstract

In the field of decision making, cognitive map (CM) has been successfully applied to resolving a wide variety of complicated decision making problems. However, in literature, it is very rare to find those studies investigating the influence of CM on decision maker’s semantic and syntactic comprehension, and inferential problem-solving performance. To pursue this research issue, we suggest the empirical findings from the rigorous experiment where participants were invited from those having experience with six sigma projects for years. To systematically test the effect of CM, participant were grouped into two expertise types (experts vs novice) and two types of CM method knowledge (high CM knowledge vs low CM knowledge). Experimental results showed that CM can be used in significantly enhancing decision makers’ semantic and syntactic comprehension, as well as inferential problem-solving.

Keywords

  • Cognitive map
  • Semantic comprehension
  • Syntactic comprehension
  • Inferential problem-solving
  • Six sigma

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-20042-7_54
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-20042-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, R.: Structure of Decision: The Cognitive Maps of Political Elites. Princeton University Press, Princeton (1976)

    Google Scholar 

  2. Hart, J.A.: Comparative cognition: politics of international control of the oceans. In: Axelrod, R. (ed.) Structure of Decision. Princeton University Press, Princeton (1976)

    Google Scholar 

  3. Hart, J.A.: Cognitive maps of three Latin American policy makers. World Politics 30(1), 115–140 (1977)

    CrossRef  Google Scholar 

  4. Robert, F.S.: Strategy for the energy crisis: the case of commuter transportation policy. In: Axelrod, R. (ed.) Structure of Decision: The cognitive Maps of Political Elites. Princeton University Press, Princeton (1976)

    Google Scholar 

  5. Montazemi, A.R., Conrath, D.W.: The Use of Cognitive Mapping for Information Requirements Analysis. MIS Quarterly 10(1), 45–56 (1986)

    CrossRef  Google Scholar 

  6. Lee, K.C., Kwon, S.J.: The use of cognitive maps and case-based reasoning for B2B negotiation. Journal of Management Information Systems 22(4), 337–376 (2006)

    MathSciNet  CrossRef  Google Scholar 

  7. Clarke, L., Mackaness, W.: Management ‘Intuition’: An Interpretative Account of Structure and Content of Decision Schemas Using Cognitive Maps. Journal of Management Studies 38(2), 147–172 (2001)

    CrossRef  Google Scholar 

  8. Satur, R., Liu, Z.Q.: A Contextual Fuzzy Cognitive Map Framework for Geographic Information Systems. IEEE Transactions on Fuzzy Systems 7(5), 481–494 (1999)

    CrossRef  Google Scholar 

  9. Liu, Z.Q., Satur, R.: Contextual fuzzy cognitive map for decision support in geographic information systems. IEEE Transactions on Fuzzy Systems 7(5), 495–507 (1999)

    CrossRef  Google Scholar 

  10. Bradshaw, G.L., Anderson, J.R.: Elaborative encoding as an explanation of levels of processing. J. Verbal Learning and Verbal Behavior 21, 165–174 (1982)

    CrossRef  Google Scholar 

  11. Collins, A.M., Quillan, M.R.: Retrieval time from semantic memory. J. Verbal Learn. Behavior 8, 240–247 (1969)

    CrossRef  Google Scholar 

  12. Ashcraft, M.H.: Cognition. Prentice Hall, Upper Saddle River (2002)

    Google Scholar 

  13. Newell, A., Simon, H.A.: Human Problem Solving. Prentice Hall, Englewood Cliffs (1972)

    Google Scholar 

  14. Pretz, J.E., Naples, A.J., Sternberg, R.J.: Recognizing, defining, and representing problems. In: Davidson, J.E., Sternberg, R.J. (eds.) The Psychology of Problem Solving, pp. 3–30. Cambridge University Press, Cambridge (2003)

    CrossRef  Google Scholar 

  15. Weber, R.: Are attributes entities? A study of database designers’ memory structures. Inform. Systems Res. 7, 137–162 (1996)

    CrossRef  Google Scholar 

  16. Mayer, R.: Models for understanding. Rev. Educational Res. 59, 43–64 (1989)

    CrossRef  Google Scholar 

  17. Burton-Jones, A., Weber, R.: Understanding relationships with attributes in entity-relationship diagrams. In: Proc. 20th International Conference Information Systems, Charlotte, NC, pp. 214–228 (1999)

    Google Scholar 

  18. Khatri, V., Ramesh, V., Vessey, I., Clay, P., Park, S.J.: Understanding conceptual schemas: Exploring the role of application and IS domain knowledge. Inform. Systems Res. 17(1), 81–99 (2006)

    CrossRef  Google Scholar 

  19. Burkhardt, J.M., Détienne, F., Wiedenbeck, S.: Object-oriented program comprehension: Effect of expertise, task and phase. Empirical Software Engineering 7(2), 115–156 (2002)

    CrossRef  MATH  Google Scholar 

  20. Bodart, F., Sim, M., Patel, A., Weber, R.: Should optional properties be used in conceptual modelling? A theory and three empirical tests. Information Systems Research 12(4), 385–405 (2001)

    CrossRef  Google Scholar 

  21. Schneiderman, B., Mayer, R.E.: Syntactic/semantic interactions in programmer behavior: A model and experimental results. Internat. J. Comput. Inform. Sci. 8, 219–238 (1979)

    CrossRef  MATH  Google Scholar 

  22. Mayer, R.E.: Thinking, Problem Solving, Cognition, pp. 560–578. W.H. Freeman and Company, New York (1991)

    Google Scholar 

  23. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd edn. Benjamin/Cummings Publishing Co., Redwood City (1994)

    MATH  Google Scholar 

  24. Gemino, A.: Empirical comparisons of animation and narration in requirements validation. Requirements Engineering 9(3), 153–168 (2004)

    CrossRef  Google Scholar 

  25. Taber, R.: Knowledge processing with fuzzy cognitive maps. Expert Systems with Applications 2(1), 83–87 (1991)

    CrossRef  Google Scholar 

  26. Burton-Jones, A., Meso, P.N.: Conceptualizing Systems for Understanding: An Empirical Test of Decomposition Principles in Object-Oriented Analysis. Information Systems Research 17(1), 38–60 (2006)

    CrossRef  Google Scholar 

  27. Goodhue, D.L., Thompson, R.L.: Task Technology Fit and Individual Performance. MIS Quarterly 19, 213–236 (1995)

    CrossRef  Google Scholar 

  28. Tan, J.K.H., Benbasat, I.: The Effectiveness of Graphical Presentation for Information. Decision Sciences 24, 167–191 (1993)

    CrossRef  Google Scholar 

  29. Vessey, I.: Cognitive Fit: A Theory-Based Analysis of the Graphs Versus. Decision Sciences 22, 219–240 (1991)

    CrossRef  Google Scholar 

  30. Vessey, I., Galletta, D.F.: Cognitive Fit: An Empirical Study of Information Acquisition. Information Systems Research 2, 63–84 (1991)

    CrossRef  Google Scholar 

  31. Perrig, W., Kintsch, W.: Propositional and situational representations of text. Journal of Memory and Language 24, 503–518 (1985)

    CrossRef  Google Scholar 

  32. Daft, R.L., Lengel, R.H., Trevino, L.K.: Message Equivocality, Media Selection and Manager Performance. MIS Quarterly (11), 355–364 (1987)

    Google Scholar 

  33. Nelson, K.M., Nadkarni, S., Narayanan, V.K., Ghods, M.: Understanding software operations support expertise: a revealed causal mapping approach. MIS Quarterly 24(3), 475–507 (2000)

    CrossRef  Google Scholar 

  34. Batra, D., Davis, J.G.: Conceptual data modelling in database design: Similarities and differences between expert and novice designers. Internat. J. Man-Machine Stud. 37, 83–101 (1992)

    CrossRef  Google Scholar 

  35. Lee, H., Choi, B.G.: A comparative study of conceptual data modeling techniques. J. Database Management 9, 26–35 (1998)

    CrossRef  Google Scholar 

  36. Moody, D.L., Shanks, G.G., Darke, P.: Improving the quality of entity relationship models—Experience in research and practice. In: Ling, T.-W., Ram, S., Li Lee, M. (eds.) ER 1998. LNCS, vol. 1507, pp. 255–276. Springer, Heidelberg (1998)

    CrossRef  Google Scholar 

  37. Mayer, R.E., Gallini, J.K.: When is an illustration worth a thousand words. J. Ed. Psych. 82, 715–726 (1990)

    CrossRef  Google Scholar 

  38. Gemino, A., Wand, Y.: Evaluating modeling techniques based on models of learning. Communications of ACM 46(10), 79–84 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kwon, S.J., Lee, K.C., Mustapha, E.E. (2011). The Role of Cognitive Map on Influencing Decision Makers’ Semantic and Syntactic Comprehension, and Inferential Problem Solving Performance. In: Nguyen, N.T., Kim, CG., Janiak, A. (eds) Intelligent Information and Database Systems. ACIIDS 2011. Lecture Notes in Computer Science(), vol 6592. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20042-7_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20042-7_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20041-0

  • Online ISBN: 978-3-642-20042-7

  • eBook Packages: Computer ScienceComputer Science (R0)