Skip to main content

Charoite, as an Example of a Structure with Natural Nanotubes

  • Chapter
  • First Online:
Minerals as Advanced Materials II

Abstract

Charoite from the Murun massif in Yakutiya, Russia (Vorob’ev 2008) was investigated using automated electron diffraction tomography (ADT) (Kolb et al. 2007, 2008; Mugnaioli et al. 2010) and precession electron diffraction (PED) (Mugnaioli et al. 2010, 2009), which allowed to determine the structure of charoite for the first time. The structure was solved ab initio in space group P21/m by direct methods using a fully kinematic approach. The least squares refinements with 2878 reflections F(hkl) >4s F converged to unweighted/weighted residuals R 1/wR 2 • 0.173/0.21 (Rozhdestvenskaya et al. 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Czank M, Bissert G (1993) The crystal structure of Li2Mg2[Si4O11], a loop-branched dreier single chain silicate. Z Kristallogr 204:129–142

    Article  Google Scholar 

  • Kolb U, Gorelik T, Kübel C, Otten M, Hubert D (2007) Towards automated diffraction tomography: Part I – data acquisition. Ultramicroscopy 107:507–513

    Article  Google Scholar 

  • Kolb U, Gorelik T, Otten M (2008) Towards automated diffraction tomography. Part II – cell parameter determination. Ultramicroscopy 108:763–772

    Article  Google Scholar 

  • Krivovichev S (2005) Topology of microporous structures. In: Ferraris G, Merlino S (Eds) Rev Miner Geochem 57: 17–68

    Google Scholar 

  • Krivovichev S (2008) Nanotubes in minerals and mineral-related systems. In: Krivovichev S (ed) Minerals as advanced materials I. Springer, Berlin/Heidelberg, pp 179–191

    Chapter  Google Scholar 

  • Kudoh Y, Takeuchi Y (1979) Polytypism in xonotlite: (I) structure of an A-1 polytype. Miner J 9:349–373

    Article  Google Scholar 

  • Merlino S (1983) Okenite, Ca10Si18O46*18H2O: the first example of a chain and sheet silicate. Amer Miner 68:614–622

    Google Scholar 

  • Mugnaioli E, Gorelik T, Kolb U (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109:758

    Article  Google Scholar 

  • Mugnaioli E, Gorelik T, Stewart A, Kolb U (2010) “Ab initio” structure solution of nano-crystalline minerals and synthetic materials by automated electron tomography. In: Krivovichev S (ed) Minerals as advanced materials II. Springer, Berlin, this volume

    Google Scholar 

  • Ogihara H, Takenaka S, Yamanaka I, Tanabe E, Genseki A, Otsuka K (2006) Synthesis of SiO2 nanotubes and their application as nanoscale reactors. Chem Mater 18:996–1000

    Article  Google Scholar 

  • Pokropivny V (2001) Non-carbon nanotubes (Review). Part 2. Types and structure. Powder Metall Met Ceram 40:11–12, 582–594

    Google Scholar 

  • Rozhdestvenskaya I, Evdokimov M (2006) Refinement of  miserite crystal structure (K1.290.21)[Ca5.51M 3+0.49 ](Si6(O,OH)15)(Si2O7)(F,OH)2 0.25H2O, (M • Y, REE, Fe, Ti, Mn, Mg, Na) from the Dara-i-Pioz occurrence, Pamir, Tajikistan. Dokl Earth Sci 406:74–78

    Article  Google Scholar 

  • Rozhdestvenskaya I, Nikishova L, Bannova I, Lazebnik K (1988) Canasite: refinement and features of crystal structure, structural typomorphism. Miner Zh 10(4):31–41 (in Russian)

    Google Scholar 

  • Rozhdestvenskaya I, Nikishova L, Lazebnik K (1996) The crystal structure of frankamenite. Miner Mag 60:897–905

    Article  Google Scholar 

  • Rozhdestvenskaya I, Mugnaioli E, Czank M, Depmeier W, Kolb U, Reinholdt A, Weirich T (2010) The structure of charoite, (K,Sr,Ba,Mn)15-16(Ca,Na)32[(Si70(O,OH)180)](OH,F)4.0 * nH2O, solved by conventional and automated electron diffraction. Miner Mag 74:159–177

    Article  Google Scholar 

  • Vorob’ev E (2008) Charoite. Novosibirsk, Russia

    Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for financial support (DE 412/44-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Rozhdestvenskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rozhdestvenskaya, I., Mugnaioli, E., Czank, M., Depmeier, W., Kolb, U. (2011). Charoite, as an Example of a Structure with Natural Nanotubes. In: Krivovichev, S. (eds) Minerals as Advanced Materials II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20018-2_6

Download citation

Publish with us

Policies and ethics