Skip to main content

Microporous Vanadylphosphates – Perspective Materials for Technological Applications

  • Chapter
  • First Online:
Minerals as Advanced Materials II

Abstract

The presently known world resources of vanadium are estimated as 63 million tons. There is no single mineral ore from which vanadium is recovered because it does not occur in highly concentrated forms. However, it is known as a trace element in a number of different rock materials and is a by-product of other mining operations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babel D (1974) Die Kristallstruktur des quaternaeren Fluorids BaLiCrF6. Z Anorg Allg Chem 406:23–37

    Article  Google Scholar 

  • Baran EJ (2003) Model studies related to vanadium biochemistry: recent advances and perspectives. J Braz Chem Soc 14:878–888

    Article  Google Scholar 

  • Barker J, Gover RKB, Burns P, Bryan AJ (2006) Hybrid-ion a lithium-ion cell based on a sodium insertion material. Electrochem Solid State Lett 9:A190–A192

    Article  Google Scholar 

  • Borel MM, Leclaire A, Chardon J, Daturi M, Raveau B (2000) Dimorphism of the vanadium(V) monophosphate PbVO2PO4: alpha-layered and beta-tunnel structures. J Solid State Chem 149:149–154

    Article  Google Scholar 

  • Brugger J, Krivovichev SV, Meisser N, Ansermet S, Armbruster T (2006) Scheuchzerite, Na(Mn, Mg)9(VSi9O28(OH))(OH)3, a new single-chain silicate. Amer Miner 91:937–943

    Article  Google Scholar 

  • Centi G, Trifiro F, Ebner JR, Franchetti VM (1988) Mechanistic aspects of maleic-anhydride synthesis from C4-hydrocarbons over phosphorus vanadium-oxide. Chem Rev 88:55–80

    Article  Google Scholar 

  • Chen Y, Zhao Y, An X, Liu J, Dong Y, Chen L (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54:5844–5850

    Article  Google Scholar 

  • Evans HT Jr (1973) The crystal structures of cavansite and pentagonite. Amer Miner 58:412–424

    Google Scholar 

  • Gramaccioli CM, Liborio G, Pilati T (1981) Structure of medaite, Mn6(VSi5O18(OH)): the presence of a new kind of heteropolysilicate anion. Acta Crystallogr B37:1972–1978

    Google Scholar 

  • Ishida N, Kimata M, Nishida N, Hatta T, Shimizu M, Akasaka T (2009) Polymorphic relation between cavansite and pentagonite: genetic implications of oxonium ion in cavansite. J Mineral Petrol Sci 104:241–252

    Article  Google Scholar 

  • Le Meins JM, Crosnier-Lopez MP, Hemon-Ribaud A, Courbion G (1999) Phase transitions in the Na3 M 2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): synthesis, thermal, structural, and magnetic studies. J Solid State Chem 148:260–277

    Article  Google Scholar 

  • Leclaire A, Chardon J, Raveau B (2001) Hydrothermal synthesis and crystal structure of a lead vanadium monophosphate hydrate with an open structure: Pb2V2O4(PO4)2.2(H2O). J Mater Chem 11:1482–1485

    Article  Google Scholar 

  • Massa W, Yakubovich OV, Dimitrova OV (2002) Crystal structure of a new sodium vanadyl(IV) fluoride phosphate Na3{V2O2F(PO4)2}. Solid State Sci 4:495–501

    Article  Google Scholar 

  • Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144:1188–1194

    Article  Google Scholar 

  • Sauvage F, Quarez E, Tarascon JM, Baudrin E (2006) Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci 8:1215–1221

    Article  Google Scholar 

  • Starova GL, Krivovichev SV, Filatov SK (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. II. Crystal structure of Cu4O2((As, V)O4). Z Kristallogr 213:650–653

    Article  Google Scholar 

  • Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  Google Scholar 

  • Whittingham MS, Song Y, Lutta S, Zavalij PY, Chernova NA (2005) Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J Mater Chem 15:3362–3379

    Article  Google Scholar 

  • Yakubovich OV (2009) Structural typomorphism of amphoteric oxocomplexes in a lithophilous system of crystal genesis: genetic crystal chemistry of vanadium. In: Urusov VS (ed) The problems of crystallology. GEOS, Moscow, in Russian

    Google Scholar 

  • Yakubovich OV, Mel’nikov OK (1996) Anionic framework of a mixed type in Na3{Al2F3(PO4)2} crystalline structure. Crystallogr Rep 41:663–668 (in Russian)

    Google Scholar 

  • Yakubovich OV, Kireev VV, Mel’nikov OK (2000) Refinement of crystal structure of a Ge-analogue of natisite Na2{TiGeO4} and prediction of new phases with anionic MTO5 radicals. Crystallogr Rep 45:578–584

    Article  Google Scholar 

  • Yakubovich OV, Massa W, Pekov IV (2002) Crystal structure of the new mineral bushmakinite, Pb2{(Al, Cu)(PO4)((V, Cr, P)O4)(OH)}. Dokl Earth Sci 382:100–105

    Google Scholar 

  • Yakubovich OV, Massa W, Dimitrova OV (2006) A new type of mixed anionic framework in microporous caesium titanium vanadyl(V) phosphate Cs2(Ti(VO2)3(PO4)3). Solid State Sci 8:71–76

    Article  Google Scholar 

  • Yakubovich OV, Steele IM, Dimitrova OV (2008) A new type of mixed anionic framework in microporous rubidium copper vanadyl(V) phosphate, Rb2Cu(VO2)2(PO4)2. Acta Crystallogr C64:62–65

    Google Scholar 

  • Yakubovich OV, Pekov IV, Steele IM, Massa W, Chukanov NV (2009) Alkali metals in beryl and their role in the formation of derivative structural motifs: comparative crystal chemistry of vorobyevite and pezzottaite. Crystallogr Rep 54:399–412

    Article  Google Scholar 

  • Yakubovich OV, Yakovleva EV, Dimitrova OV (2010) Crystal structure of Rb2(Ti(VO2)3(PO4)3). Crystallogr Rep 55:210–215

    Article  Google Scholar 

  • Zhou Y, Ming P, Liu J (2010) Hydrothermal synthesis and structure of an open-framework, large-channel vanadium–cobalt phosphate (C4H12N2)2(CoII(H2O)2(VVO2)2(VIVO)2(PO4)4) ·2H2O. Inorg Chem Commun 13:1–4

    Article  Google Scholar 

Download references

Acknowledgements

I am much obliged to W. Massa, I. Steele and O. Dimitrova for their collaboration at different stages of experimentations. Financial support by the Russian Fund for Basic Researches (grant 10-05-01068a) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Yakubovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yakubovich, O.V. (2011). Microporous Vanadylphosphates – Perspective Materials for Technological Applications. In: Krivovichev, S. (eds) Minerals as Advanced Materials II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20018-2_24

Download citation

Publish with us

Policies and ethics