Advertisement

Stem Cells from Human Adipose Tissue: A New Tool for Pharmacological Studies and for Clinical Applications

  • Claude A. Dechesne
  • Christian Dani
Chapter

Abstract

Mesenchymal stem cells with a multilineage potential at the single cell level have been isolated from human adipose tissue. These cells, called human multipotent adipose-derived stem (hMADS) cells, have been established in culture and interestingly, maintain their characteristics with long-term passaging. The adipocyte differentiation of hMADS cells has been thoroughly studied and differentiated cells exhibit the unique feature of human adipocytes, making them a powerful tool for pharmacological studies. Potential applications of adipose-derived stem cells in medicine in the field of muscular dystrophy cell-based therapy will also be discussed. hMADS cells harbour a limited autonomous myogenic differentiation potential. However, this capacity can be increased by genetic modification. hMADS cells modified with MyoD, a master gene of embryonic myogenesis, have been shown in vitro and in vivo to be as myogenic as genuine myoblasts.

Keywords

Satellite Cell Duchenne Muscular Dystrophy Myogenic Differentiation Brown Adipocyte Human Adipocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1.  1.
    Ailhaud G (2006) Adipose tissue as a secretory organ: from adipogenesis to the metabolic syndrome. C R Biol 329(8):570–577PubMedCrossRefGoogle Scholar
  2.  2.
    Bacou F, el Andalousi RB, Daussin PA et al (2004) Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant 13(2):103–111PubMedGoogle Scholar
  3.  3.
    Bezaire V, Mairal A, Ribet C et al (2009) Contribution of adipose triglyceride lipase and hormone-sensitive lipase to lipolysis in hMADS adipocytes. J Biol Chem 284(27):18282–18291PubMedCrossRefGoogle Scholar
  4.  4.
    Darimont C, Zbinden I, Avanti O et al (2003) Reconstitution of telomerase activity combined with HPV-E7 expression allow human preadipocytes to preserve their differentiation capacity after immortalization. Cell Death Differ 10(9):1025–1031PubMedCrossRefGoogle Scholar
  5.  5.
    Di Rocco G, Iachininoto MG, Tritarelli A et al (2006) Myogenic potential of adipose-tissue-derived cells. J Cell Sci 119(Pt 14):2945–2952PubMedCrossRefGoogle Scholar
  6.  6.
    Elabd C, Chiellini C, Massoudi A et al (2007) Human adipose tissue-derived multipotent stem cells differentiate in vitro and in vivo into osteocyte-like cells. Biochem Biophys Res Commun 361(2):342–348PubMedCrossRefGoogle Scholar
  7.  7.
    Elabd C, Basillais A, Beaupied H et al (2008) Oxytocin controls differentiation of human mesenchymal stem cells and reverses osteoporosis. Stem Cells 26(9):2399–2407PubMedCrossRefGoogle Scholar
  8.  8.
    Elabd C, Chiellini C, Carmona M et al (2009) Human multipotent adipose-derived stem cells differentiate into functional brown adipocytes. Stem Cells 27(11):2753–2760PubMedCrossRefGoogle Scholar
  9.  9.
    Farini A, Razini P, Erratico S et al (2009) Cell based therapy for Duchenne muscular dystrophy. J Cell Physiol 221(3):526–534PubMedCrossRefGoogle Scholar
  10. 10.
    Galitzky J, Langin D, Verwaerde P et al (1997) Lipolytic effects of conventional beta 3-adrenoceptor agonists and of CGP 12,177 in rat and human fat cells: preliminary pharmacological evidence for a putative beta 4-adrenoceptor. Br J Pharmacol 122(6):1244–1250PubMedCrossRefGoogle Scholar
  11. 11.
    Gang EJ, Bosnakovski D, Simsek T et al (2008) Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp Cell Res 314(8):1721–1733PubMedCrossRefGoogle Scholar
  12. 12.
    Goudenege S, Pisani DF, Wdziekonski B et al (2009) Enhancement of myogenic and muscle repair capacities of human adipose-derived stem cells with forced expression of MyoD. Mol Ther 17(6):1064–1072PubMedCrossRefGoogle Scholar
  13. 13.
    Jeninga EH, Bugge A, Nielsen R et al (2009) Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J Biol Chem 284(39):26385–26393PubMedCrossRefGoogle Scholar
  14. 14.
    Lafontan M, Sengenes C, Galitzky J et al (2000) Recent developments on lipolysis regulation in humans and discovery of a new lipolytic pathway. Int J Obes Relat Metab Disord 24(suppl 4):S47–S52PubMedCrossRefGoogle Scholar
  15. 15.
    Lee JH, Kemp DM (2006) Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun 341(3):882–888PubMedCrossRefGoogle Scholar
  16. 16.
    Mizuno H, Zuk PA, Zhu M et al (2002) Myogenic differentiation by human processed lipoaspirate cells. Plast Reconstr Surg 109(1):199–209; discussion 210–211PubMedCrossRefGoogle Scholar
  17. 17.
    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):E444–E452PubMedCrossRefGoogle Scholar
  18. 18.
    Plaisant M, Fontaine C, Cousin W et al (2009) Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells 27(3):703–713PubMedCrossRefGoogle Scholar
  19. 19.
    Poitou C, Divoux A, Faty A et al (2009) Role of serum amyloid a in adipocyte-macrophage cross talk and adipocyte cholesterol efflux. J Clin Endocrinol Metab 94(5):1810–1817PubMedCrossRefGoogle Scholar
  20. 20.
    Rodriguez A-M, Elabd C, Delteil F et al (2004) Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Commun 315(2):255–263PubMedCrossRefGoogle Scholar
  21. 21.
    Rodriguez A-M, Pisani D, Dechesne CA et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201(9):1397–1405PubMedCrossRefGoogle Scholar
  22. 22.
    Rosen ED, Spiegelman BM (2000) Molecular regulation of adipogenesis. Annu Rev Cell Dev Biol 16:145–171PubMedCrossRefGoogle Scholar
  23. 23.
    Saito T, Dennis JE, Lennon DP et al (1995) Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng 1(4):327–343PubMedCrossRefGoogle Scholar
  24. 24.
    Sampaolesi M, Blot S, D’Antona G et al (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579PubMedCrossRefGoogle Scholar
  25. 25.
    Sennitt MV, Kaumann AJ, Molenaar P et al (1998) The contribution of classical (beta1/2-) and atypical beta-adrenoceptors to the stimulation of human white adipocyte lipolysis and right atrial appendage contraction by novel beta3-adrenoceptor agonists of differing selectivities. J Pharmacol Exp Ther 285(3):1084–1095PubMedGoogle Scholar
  26. 26.
    Tapscott SJ, Davis RL, Thayer MJ et al (1988) MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242(4877):405–411PubMedCrossRefGoogle Scholar
  27. 27.
    Torrente Y, Belicchi M, Sampaolesi M et al (2004) Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest 114(2):182–195PubMedGoogle Scholar
  28. 28.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360(15):1500–1508PubMedCrossRefGoogle Scholar
  29. 29.
    Vernochet C, Azoulay S, Duval D et al (2003) Differential effect of HIV protease inhibitors on adipogenesis: intracellular ritonavir is not sufficient to inhibit differentiation. AIDS 17(15):2177–2180PubMedCrossRefGoogle Scholar
  30. 30.
    Vernochet C, Azoulay S, Duval D et al (2004) Human immunodeficiency virus protease inhibitors accumulate into cultured human adipocytes and alter expression of adipocytokines. J Biol Chem 280(3):2238–2243PubMedCrossRefGoogle Scholar
  31. 31.
    Vernochet C, Azoulay S, Duval D et al (2005) Human immunodeficiency virus protease inhibitors accumulate into cultured human adipocytes and alter expression of adipocytokines. J Biol Chem 280(3):2238–2243PubMedCrossRefGoogle Scholar
  32. 32.
    Vieira NM, Bueno CR Jr, Brandalise V et al (2008) SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression. Stem Cells 26(9):2391–2398PubMedCrossRefGoogle Scholar
  33. 33.
    Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525PubMedCrossRefGoogle Scholar
  34. 34.
    Wabitsch M, Brenner RE, Melzner I et al (2001) Characterization of a human preadipocyte cell strain with high capacity for adipose differentiation. Int J Obes Relat Metab Disord 25(1):8–15PubMedCrossRefGoogle Scholar
  35. 35.
    Wabitsch M, Bruderlein S, Melzner I et al (2000) LiSa-2, a novel human liposarcoma cell line with a high capacity for terminal adipose differentiation. Int J Cancer 88(6):889–894PubMedCrossRefGoogle Scholar
  36. 36.
    Wakitani S, Saito T, Caplan AI (1995) Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 18(12):1417–1426PubMedCrossRefGoogle Scholar
  37. 37.
    Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24(11):2412–2419PubMedCrossRefGoogle Scholar
  38. 38.
    Zheng B, Cao B, Li G et al (2006) Mouse adipose-derived stem cells undergo multilineage differentiation in vitro but primarily osteogenic and chondrogenic differentiation in vivo. Tissue Eng 12(7):1891–1901PubMedCrossRefGoogle Scholar
  39. 39.
    Zilberfarb V, Pietri-Rouxel F, Jockers R et al (1997) Human immortalized brown adipocytes express functional beta3-adrenoceptor coupled to lipolysis. J Cell Sci 110(Pt 7):801–807PubMedGoogle Scholar
  40. 40.
    Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295PubMedCrossRefGoogle Scholar
  41. 41.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Institute of Developmental Biology and CancerUniversity of Nice Sophia-Antipolis, CNRSNiceFrance

Personalised recommendations